5 research outputs found

    Octupolar Plasmonic Meta-Molecules for Nonlinear Chiral Watermarking at Subwavelength Scale

    No full text
    Nonlinear chiroptical effects of precisely designed chiral plasmonic nanomaterials can be much stronger than such effects observed in the linear regime. We take advantage of this property to demonstrate the use of circularly polarized second-harmonic generation microscopy toward the efficient read-out of a microscopic pattern encoded by an array of triangular gold nanoprisms forming arrangements of adequate chiral symmetry. Strong chiroptical effects are observed in the backscattered second-harmonic generation intensity, enabling clear distinction of the laterally arranged enantiomers, down to nearly 1 ÎŒm resolution, with an overall intensity contrast of about 40% (second-harmonic generation circular dichroism of 20%). Numerical simulations show a noticeable change in the spatial distribution of plasmonic hot spots within the individual nanostructures under excitation by circularly polarized light of different handedness. This leads to rather weak chiroptical effect in the linear backscattering (theoretical circular dichroism not exceeding 3%), in contrast with the much more significant change of the second-harmonic generation in the far-field (second-harmonic generation circular dichroism from 16 up to 37%). These results open the possibility of designing deeply subwavelength chiral nanostructures for encoding microscopic “watermarks”, which cannot be easily accessed by linear optical methods, moreover requiring a nonlinear microscopy setup for reading out the encoded pattern

    DNA Antiadhesive Layer for Reusable Plasmonic Sensors: Nanostructure Pitch Effect

    No full text
    A long-term reusable sensor that provides the opportunity to easily regenerate the active surface and minimize the occurrence of undesired absorption events is an appealing solution that helps to cut down the costs and improve the device performances. Impressive advances have been made in the past years concerning the development of novel cutting-edge sensors, but the reusability can currently represent a challenge. Direct shielding of the sensor surface is not always applicable, because it can impact the device performance. This study reports an antiadhesive layer (AAL) made of 90 mg/mL DNA sodium salt from salmon testes (ssstDNA) for passivating gold plasmonic sensor surfaces. Our gold two-dimensional (2D) nanostructured plasmonic metasurfaces modified with AAL were used for DNA quantification. AAL is thin enough that the plasmonic sensor remains sensitive to subsequent deposition of DNA, which serves as an analyte. AAL protects the gold surface from unwanted nonspecific adsorption by enabling wash-off of the deposited analyte after analysis and thus recovery of the LSPR peak position (rLSPR). The calibration curve obtained on a single nanostructure (Achiral Octupolar, 100 nm pitch) gave an LOD = 105 ng/mL and an extraordinary dynamic range, performances comparable or superior to those of commercial UV–vis spectrometers for acid nucleic dosage. Two different analytes were tested: ssstDNA (∌2000 bp) in deionized water and double-strand DNA (dsDNA) of 546–1614 bp in 100 mM Tris buffer and 10 mM MgCl2. The two nanostructures (Achiral Octupolar 25 and 100) were found to have the same sensitivity to DNA in deionized water but different sensitivity to DNA in a salt/buffer solution, opening a potential for solute discrimination. To the best of our knowledge, this is the first report on the use of AAL made of several kilobase-pairs-long dsDNA to produce a reusable plasmonic sensor. The working principle and limitations are drawn based on the LSPR and SERS study

    Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes

    No full text
    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue–Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities <i>via</i> propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics

    Fabrication of Novel Two-Dimensional Nanopatterned Conductive PEDOT:PSS Films for Organic Optoelectronic Applications

    No full text
    This paper presents a novel strategy to fabricate two-dimensional poly­(3,4 ethylenedioxythiophene):poly­(styrene sulfonate) (PEDOT:PSS) photonic crystals (PCs) combining electron beam lithography (EBL) and plasma etching (PE) processes. The surface morphology of PEDOT:PSS PCs after mild oxygen plasma treatment was investigated by scanning electron microscopy. The effects on light extraction are studied experimentally. Vertical extraction of light was found to be strongly dependent on the geometric parameters of the PCs. By changing the lattice type from triangular to square and the geometrical parameters of the photonic structures, the resonance peak could be tuned from a narrow blue emission at 445 nm up to a green emission at 525 nm with a full width at half-maximum of 20 nm, which is in good agreement with Bragg’s diffraction theory and free photon band structure. Both finite-difference time-domain and plane wave expansion methods are used to calculate the resonant frequencies and the photonic band structures in the two-dimensional photonic crystals showing a very good agreement with the experiment results. A 2D nanopatterned transparent anode was also fabricated onto a flexible polyethylene terephthalate (PET) substrate and it was integrated into an organic light-emitting diode (OLED). The obtained results fully confirm the feasibility of the developed process of micro/nano patterning PEDOT:PSS. Engineered polymer electrodes prepared by this unique method are useful in a wide variety of high-performance flexible organic optoelectronics

    Octupolar Metastructures for a Highly Sensitive, Rapid, and Reproducible Phage-Based Detection of Bacterial Pathogens by Surface-Enhanced Raman Scattering

    No full text
    The development of fast and ultrasensitive methods to detect bacterial pathogens at low concentrations is of high relevance for human and animal health care and diagnostics. In this context, surface-enhanced Raman scattering (SERS) offers the promise of a simplified, rapid, and high-sensitive detection of biomolecular interactions with several advantages over previous assay methodologies. In this work, we have conceived reproducible SERS nanosensors based on tailored multilayer octupolar nanostructures which can combine high enhancement factor and remarkable molecular selectivity. We show that coating novel multilayer octupolar metastructures with proper self-assembled monolayer (SAM) and immobilized phages can provide label-free analysis of pathogenic bacteria via SERS leading to a giant increase in SERS enhancement. The strong relative intensity changes of about 2100% at the maximum scattered SERS wavelength, induced by the Brucella bacterium captured, demonstrate the performance advantages of the bacteriophage sensing scheme. We performed measurements at the single-cell level thus allowing fast identification in less than an hour without any demanding sample preparation process. Our results based on designing well-controlled octupolar coupling platforms open up new opportunities toward the use of bacteriophages as recognition elements for the creation of SERS-based multifunctional biochips for rapid culture and label-free detection of bacteria
    corecore