7 research outputs found

    KIR3DS1-Mediated Recognition of HLA-*B51: Modulation of KIR3DS1 Responsiveness by Self HLA-B Allotypes and Effect on NK Cell Licensing

    Get PDF
    Several studies described an association between killer-cell immunoglobulin-like receptor (KIR)/HLA gene combinations and clinical outcomes in various diseases. In particular, an important combined role for KIR3DS1 and HLA-B Bw4-I80 in controlling viral infections and a higher protection against leukemic relapses in donor equipped with activating KIRs in haplo-HSCT has been described. Here, we show that KIR3DS1 mediates positive signals upon recognition of HLA-B*51 (Bw4-I80) surface molecules on target cells and that this activation occurs only in Bw4-I80neg individuals, including those carrying particular KIR/HLA combination settings. In addition, killing of HLA-B*51 transfected target cells mediated by KIR3DS1+/NKG2A+ natural killer (NK) cell clones from Bw4-I80neg donors could be partially inhibited by antibody-mediated masking of KIR3DS1. Interestingly, KIR3DS1-mediated recognition of HLA-B*51 could be better appreciated under experimental conditions in which the function of NKG2D was reduced by mAb-mediated blocking. This experimental approach may mimic the compromised function of NKG2D occurring in certain viral infections. We also show that, in KIR3DS1+/ NKG2A+ NK cell clones derived from an HLA-B Bw4-T80 donor carrying 2 KIR3DS1 gene copy numbers, the positive signal generated by the engagement of KIR3DS1 by HLA-B*51 resulted in a more efficient killing of HLA-B*51-transfected target cells. Moreover, in these clones, a direct correlation between KIR3DS1 and NKG2D surface density was detected, while the expression of NKp46 was inversely correlated with that of KIR3DS1. Finally, we analyzed KIR3DS1+/NKG2A+ NK cell clones from a HLA-B Bw4neg donor carrying cytoplasmic KIR3DL1. Although these clones expressed lower levels of surface KIR3DS1, they displayed responses comparable to those of NK cell clones derived from HLA-B Bw4neg donors that expressed surface KIR3DL1. Altogether these data suggest that, in particular KIR/HLA combinations, KIR3DS1 may play a role in the process of human NK cell educatio

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    A fast and reliable method for detecting SNP rs67384697 (Hsa-miR-148a binding site) by a single run of allele-specific real-time PCR

    No full text
    Surface expression of HLA-class I molecules is critical for modulating T/NK lymphocytes' effector functions. Amongst HLA molecules, HLA-C, the most recently evolved form of class I antigens, is subjected to both transcriptional and multiple post transcriptional regulation mechanisms affecting its cell surface expression. Amongst the latter a region placed in the 3' untranslated region (UTR) of HLA-C transcript contains the single nucleotide polymorphism (SNP) rs67384697 "G-ins/del" that has been found to be strictly associated with surface levels of HLA-C allomorphs due to the effect on the binding site of a microRNA (Hsa-miR-148a). Higher expression of HLA-C has proved to influence HIV-1 infection via a better control of viremia and a slower disease progression. More importantly, the analysis of SNP rs67384697 "G-ins/del" combined with the evaluation of the HLA-Bw4/-Bw6 C1/C2 supratype, as well as the KIR genetic asset, has proved to be pivotal in defining the status of Elite Controllers in the caucasian population. Here we describe a new reliable and fast method of allele-specific real-time PCR to monitor the integrity/disruption of the binding site of the microRNA Hsa-miR-148a in a high-throughput format that can be easily applied to studies involving large cohorts of individuals. This article is protected by copyright. All rights reserved

    Experimental study of the decays of 112Cs and 111Xe

    Get PDF
    An experiment to search for the \u3b1 decay of 112Cs has been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The \u3b1 decay of 112Cs was not observed, thus setting the upper limit of the \u3b1 branching ratio at 0.26%. The half-life of 112Cs was measured as 506\ub155 \u3bcs. In the same measurement the decay properties of its proton decay daughter 111Xe were also reinvestigated. The newly measured \u3b1 branching ratio for 111Xe is 10.4\ub11.9 %. The experimental proton separation energies Sp for odd-Z nuclei above 100Sn were compared to shell model calculations. The calculated proton separation energies for 103Sb and 102Sb point to half-lives of the order of 10 ps and 1 ns, respectively
    corecore