264 research outputs found

    Unraveling genetic sensitivity of beef cattle to environmental variation under tropical conditions

    Get PDF
    International audienceAbstractBackgroundSelection of cattle that are less sensitive to environmental variation in unfavorable environments and more adapted to harsh conditions is of primary importance for tropical beef cattle production systems. Understanding the genetic background of sensitivity to environmental variation is necessary for developing strategies and tools to increase efficiency and sustainability of beef production. We evaluated the degree of sensitivity of beef cattle performance to environmental variation, at the animal and molecular marker levels (412 K single nucleotide polymorphisms), by fitting and comparing the results of different reaction norm models (RNM), using a comprehensive dataset of Nellore cattle raised under diverse environmental conditions.ResultsHeteroscedastic RNM (with different residual variances for environmental level) provided better fit than homoscedastic RNM. In addition, spline and quadratic RNM outperformed linear RNM, which suggests the existence of a nonlinear genetic component affecting the performance of Nellore cattle. This nonlinearity indicates that within-animal sensitivity depends on the environmental gradient (EG) level and that animals may present different patterns of sensitivity according to the range of environmental variations. The spline RNM showed that sensitivity to environmental variation from harsh to average EG is lowly correlated with sensitivity from average to good EG, at both the animal and molecular marker levels. Although the genomic regions that affect sensitivity in harsher environments were not the same as those associated with less challenging environments, the candidate genes within those regions participate in common biological processes such as those related to inflammatory and immune response. Some plausible candidate genes were identified.ConclusionsSensitivity of tropical beef cattle to environmental variation is not continuous along the environmental gradient, which implies that animals that are less sensitive to harsher conditions are not necessarily less responsive to variations in better environmental conditions, and vice versa. The same pattern was observed at the molecular marker level, i.e. genomic regions and, consequently, candidate genes associated with sensitivity to harsh conditions were not the same as those associated with sensitivity to less challenging conditions

    High frequency of Fredrickson's phenotypes IV and IIb in Brazilians infected by human immunodeficiency virus

    Get PDF
    BACKGROUND: Human immunodeficiency virus (HIV) infection is very prevalent in Brazil. HIV therapy has been recently associated with coronary heart disease (CHD). Dyslipidemia is a major risk factor for CHD that is frequently described in HIV positive patients, but very few studies have been conducted in Brazilian patients evaluating their lipid profiles. METHODS: In the present work, we evaluated the frequency and severity of dyslipidemia in 257 Brazilian HIV positive patients. Two hundred and thirty-eight (93%) were submitted to antiretroviral therapy (224 treated with protease inhibitors plus nucleoside reverse transcriptase inhibitors, 14 treated only with the latter, 12 naive and 7 had no records of treatment). The average time on drug treatment with antiretroviral therapy was 20 months. None of the patients was under lipid lowering drugs. Cholesterol, triglyceride, phospholipid and free fatty acids were determined by enzymatic colorimetric methods. Lipoprotein profile was estimated by the Friedewald formula and Fredrickson's phenotyping was obtained by serum electrophoresis on agarose. Apolipoprotein B and AI and lipoprotein "a" were measured by nephelometry. RESULTS: The Fredrickson phenotypes were: type IIb (51%), IV (41%), IIa (7%). In addition one patient was type III and another type V. Thirty-three percent of all HIV+ patients presented serum cholesterol levels ≄ 200 mg/dL, 61% LDL-cholesterol ≄ 100 mg/dL, 65% HDL-cholesterol below 40 mg/dL, 46% triglycerides ≄ 150 mg/dL and 10% have all these parameters above the limits. Eighty-six percent of patients had cholesterol/HDL-cholesterol ratio ≄ 3.5, 22% increased lipoprotein "a", 79% increased free fatty acids and 9% increased phospholipids. The treatment with protease inhibitors plus nucleoside reverse transcriptase inhibitors increased the levels of cholesterol and triglycerides in these patients when compared with naĂŻve patients. The HDL-cholesterol (p = 0.01) and apolipoprotein A1 (p = 0.02) levels were inversely correlated with the time of protease inhibitor therapy while total cholesterol levels had a trend to correlate with antiretroviral therapy (p = 0.09). CONCLUSION: The highly varied and prevalent types of dyslipidemia found in Brazilian HIV positive patients on antiretroviral therapies indicate the urgent need for their early diagnosis, the identification of the risk factors for CHD and, when needed, the prompt intervention on their lifestyle and/or with drug treatment

    Factors Associated with Tuberculosis Treatment Default in an Endemic Area of the Brazilian Amazon: A Case Control-Study

    Get PDF
    SETTING: Treatment default is a serious problem in tuberculosis control because it implies persistence of infection source, increased mortality, increased relapse rates and facilitates the development of resistant strains. OBJECTIVE: This study analyzed tuberculosis treatment default determinants in the Amazonas State to contribute in planning appropriate control interventions. DESIGN: Observational study with a retrospective cohort using Brazilian Disease Notification System data from 2005 to 2010. A nested case control study design was used. Patients defaulting from treatment were considered as 'cases' and those completing treatment as 'controls'. In the analysis, 11,312 tuberculosis patients were included, 1,584 cases and 9,728 controls. RESULTS: Treatment default was observed to be associated to previous default (aOR 3.20; p<0.001), HIV positivity (aOR 1.62; p<0.001), alcoholism (aOR 1.51; p<0.001), low education level (aOR 1.35; p<0.001) and other co-morbidities (aOR 1.31; p = 0.05). Older patients (aOR 0.98; p = 0.001) and DOT (aOR 0,72; p<0.01) were considered as protective factor for default. CONCLUSIONS: Associated factors should be considered in addressing care and policy actions to tuberculosis control. Information on disease and treatment should be intensified and appropriate to the level of education of the population, in order to promote adherence to treatment and counter the spread of multidrug resistance to anti-TB drugs

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    • 

    corecore