59 research outputs found

    Monitoring EGFR-lung cancer evolution: a possible beginning of a “methylation era” in TKI resistance prediction

    Get PDF
    The advances in scientific knowledge on biological therapies of the last two decades have impressively oriented the clinical management of non-small-cell lung cancer (NSCLC) patients. The treatment with tyrosine kinase inhibitors (TKIs) in patients harboring Epidermal Growth Factor Receptor (EGFR)-activating mutations is dramatically associated with an improvement in disease control. Anyhow, the prognosis for this selected group of patients remains unfavorable, due to the innate and/or acquired resistance to biological therapies. The methylome analysis of many tumors revealed multiple patterns of methylation at single/multiple cytosine-phosphate-guanine (CpG) sites that are linked to the modulation of several cellular pathways involved in cancer onset and progression. In lung cancer patients, ever increasing evidences also suggest that the association between DNA methylation changes at promoter/intergenic regions and the consequent alteration of gene-expression signatures could be related to the acquisition of resistance to biological therapies. Despite this intriguing hypothesis, large confirmatory studies are demanded to consolidate and finalize many preliminary observations made in this field. In this review, we will summarize the available knowledge about the dynamic role of DNA methylation in EGFR-mutated NSCLC patients

    VHL Frameshift Mutation as Target of Nonsense-Mediated mRNA Decay in Drosophila melanogaster and Human HEK293 Cell Line

    Get PDF
    There are many well-studied examples of human phenotypes resulting from nonsense or frameshift mutations that are modulated by Nonsense-Mediated mRNA Decay (NMD), a process that typically degrades transcripts containing premature termination codons (PTCs) in order to prevent translation of unnecessary or aberrant transcripts. Different types of germline mutations in the VHL gene cause the von Hippel-Lindau disease, a dominantly inherited familial cancer syndrome with a marked phenotypic variability and age-dependent penetrance. By generating the Drosophila UAS:Upf1D45B line we showed the possible involvement of NMD mechanism in the modulation of the c.172delG frameshift mutation located in the exon 1 of Vhl gene. Further, by Quantitative Real-time PCR (QPCR) we demonstrated that the corresponding c.163delG human mutation is targeted by NMD in human HEK 293 cells. The UAS:Upf1D45B line represents a useful system to identify novel substrates of NMD pathway in Drosophila melanogaster. Finally, we suggest the possible role of NMD on the regulation of VHL mutations

    Small Deletion at the 7q21.2 Locus in a CCM Family Detected by Real-Time Quantitative PCR

    Get PDF
    Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to haemorrhagic strokes and focal neurological signs. About 56% of the hereditary forms of CCMs have been so far associated with mutations in the KRIT1 (Krev Interaction Trapped 1) gene, located at 7q21.2 (CCM1 locus). We described the complete loss of 7q21.2 locus encompassing the KRIT1 gene and 4 flanking genes in a CCM family by using a dense set of 12 microsatellite markers. The complete loss of the maternal copy of KRIT1 gene region was confirmed by Real-Time Quantitative Polymerase Chain Reaction (RT-QPCR) and the same approach was used for expression analysis. Additional RT-QPCR analysis showed the extension of the deletion, for a total of 700 kb, to the adjacent downstream and upstream-located genes, MTERF, AKAP9, CYP51A1, as well as a partial loss of the ANKIB1 gene. Here we report the molecular characterization of an interstitial small genomic deletion of the 7q21.2 region in a CCMs affected family, encompassing the KRIT1 gene. Our findings confirm the loss of function mechanism for the already known CCM1 locus, without any evident involvement of the other deleted genes. Moreover, our investigations highlight the usefulness of the RT-QPCR to the molecular characterization of the breakpoints genomic deletions and to the identification of internal deleted genes involved in the human genetic diseases

    circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer

    Get PDF
    Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.</p

    Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids

    Get PDF
    International audienceThe worldwide incidence of pulmonary carcinoids is increasing, but little is known about their molecular characteristics. Through machine learning and multi-omics factor analysis, we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35 atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers. Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and 27%, respectively. We identify therapeutically relevant molecular groups of pulmonary car-cinoids, suggesting DLL3 and the immune system as candidate therapeutic targets; we confirm the value of OTP expression levels for the prognosis and diagnosis of these diseases, and we unveil the group of supra-carcinoids. This group comprises samples with carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC, further supporting the previously proposed molecular link between the low-and high-grade lung neuroendocrine neoplasms

    Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad

    No full text
    The transcription factor Nrf2 (NF-E2 related factor 2) is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements) in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets

    NRF2 Regulation by Noncoding RNAs in Cancers: The Present Knowledge and the Way Forward

    No full text
    Nuclear factor erythroid 2-related factor 2 (NRF2) is the key transcription factor triggered by oxidative stress that moves in cells of the antioxidant response element (ARE)-antioxidant gene network against reactive oxygen species (ROS) cellular damage. In tumors, the NRF2 pathway represents one of the most intriguing pathways that promotes chemo- and radioresistance of neoplastic cells and its activity is regulated by genetic and epigenetic mechanisms; some of these being poorly investigated in cancer. The noncoding RNA (ncRNA) network is governed by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) and modulates a variety of cellular mechanisms linked to cancer onset and progression, both at transcriptional and post-transcriptional levels. In recent years, the scientific findings about the effects of ncRNA landscape variations on NRF2 machines are rapidly increasing and need to be continuously updated. Here, we review the latest knowledge about the link between NRF2 and ncRNA networks in cancer, thus focusing on their potential translational significance as key tumor biomarkers

    The role of emerging biomarkers in the treatment of non-small cell lung cancer: current challenges and the way forward

    No full text
    Introduction: Driver molecular aberrations, such as EGFR and BRAF mutations, ALK and ROS1 rearrangements, play an important role in the oncogenesis of non-small-cell lung cancer (NSCLC). Overall, these molecular targets select about 20% of advanced nonsquamous NSCLC Caucasian patients who can be treated with the corresponding tyrosine kinase inhibitors (TKIs). Many novel driver mutations are being or have been investigated in NSCLC, with varying degrees of success and failure. These emerging molecular targets are responsible for both primary involvement in cancer growth and have acquired resistance to previous TKIs, and for which potential therapeutic strategies are under investigation.Areas covered: This review will focus on the main emerging molecular targets in advanced stage of clinical development for the management of advanced NSCLC. A systematic review of bibliographic databases for peer-reviewed research literature and of key meetings was undertaken in order to discuss these topics.Expert opinion: Many emerging driver mutations are being investigated in metastatic NSCLC. Defining the most appropriate methods of detection of molecular aberrations, focusing on their role in the mechanisms of intrinsic and acquired resistance within appropriate preclinical and clinical trials, are needed in order to improve therapeutic benefit for NSCLC patients

    Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad

    No full text
    The transcription factor Nrf2 (NF-E2 related factor 2) is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements) in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets
    corecore