6 research outputs found

    High lung cancer surgical procedure volume is associated with shorter length of stay and lower risks of re-admission and death: National cohort analysis in England.

    Get PDF
    It is debated whether treating cancer patients in high-volume surgical centres can lead to improvement in outcomes, such as shorter length of hospital stay, decreased frequency and severity of post-operative complications, decreased re-admission, and decreased mortality. The dataset for this analysis was based on cancer registration and hospital discharge data and comprised information on 15,738 non-small-cell lung cancer patients resident and diagnosed in England in 2006-2010 and treated by surgical resection. The number of lung cancer resections was computed for each hospital in each calendar year, and patients were assigned to a hospital volume quintile on the basis of the volume of their hospital. Hospitals with large lung cancer surgical resection volumes were less restrictive in their selection of patients for surgical management and provided a higher resection rate to their geographical population. Higher volume hospitals had shorter length of stay and the odds of re-admission were 15% lower in the highest hospital volume quintile compared with the lowest quintile. Mortality risks were 1% after 30 d and 3% after 90 d. Patients from hospitals in the highest volume quintile had about half the odds of death within 30 d than patients from the lowest quintile. Variations in outcomes were generally small, but in the same direction, with consistently better outcomes in the larger hospitals. This gives support to the ongoing trend towards centralisation of clinical services, but service re-organisation needs to take account of not only the size of hospitals but also referral routes and patient access

    Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study

    Get PDF
    BACKGROUND: The early to intermediate stages of the majority of colorectal tumours are thought to be driven by aberrations in the Wnt (APC, CTNNB1) and Ras (K-ras) pathways. A smaller proportion of cancers shows mismatch repair deficiency. The aim of this study was to analyse the co-occurrence of these genetic alterations in relation to tumour and patient characteristics. METHODS: In a group of 656 unselected sporadic colorectal cancer patients, aberrations in the APC, K-ras, CTNNB1 genes, and expression of hMLH1 were investigated. Additionally, tumours were divided in groups based on molecular features and compared with respect to patient's age at diagnosis, sex, family history of colorectal cancer, tumour sub-localisation, Dukes' stage and differentiation. RESULTS: Mutations at the phosphorylation sites (codons 31, 33, 37, and 45) in the CTNNB1 gene were observed in tumours from only 5/464 patients. Tumours with truncating APC mutations and activating K-ras mutations in codons 12 and 13 occurred at similar frequencies (37% (245/656) and 36% (235/656), respectively). Seventeen percent of tumours harboured both an APC and a K-ras mutation (109/656). Nine percent of all tumours (58/656) lacked hMLH1 expression. Patients harbouring a tumour with absent hMLH1 expression were older, more often women, more often had proximal colon tumours that showed poorer differentiation when compared to patients harbouring tumours with an APC and/or K-ras mutation. CONCLUSION: CTNNB1 mutations seem to be of minor importance in sporadic colorectal cancer. The main differences in tumour and patient characteristics are found between groups of patients based on mismatch repair deficiency

    Dietary folate and APC mutations in sporadic colorectal cancer

    Get PDF
    Folate deficiency has been associated with colorectal cancer risk and may be involved in colorectal carcinogenesis through increased chromosome instability, gene mutations, and aberrant DNA methylation. Within the Netherlands Cohort Study on diet and cancer, we investigated the associations between dietary folate intake and colorectal cancer risk with (APC+) and without (APC-) truncating APC mutations, accounting for hMLH1 expression and K-ras mutations. In total, 528 cases and 4200 subcohort members were available for data analyses of the study cohort (n = 120,852) from a follow-up period between 2.3 and 7.3 y after baseline. Adjusted gender-specific incidence rate ratios (RR) over tertiles of folate intake were calculated in case-cohort analyses for colon and rectal cancer. Although relatively high folate intake was not associated with overall colorectal cancer risk, it reduced the risk of APC- colon tumors in men (RR 0.58, 95% CI 0.32-1.05, P trend = 0.06 for the highest vs. lowest tertile of folate intake). In contrast, it was positively associated with APC+ colon tumors in men (highest vs. lowest tertile: RR 2.77, 95% CI 1.29-5.95, Ptrend = 0.008) and was even stronger when the lack of hMLH1 expression and K-ras mutations were excluded (RR 3.99, 95% CI 1.43-11.14, Ptrend = 0.007). Such positive associations were not observed among women; nor was folate intake associated with rectal cancer when APC mutation status was taken into account. Relatively high folate consumption reduced the risk of APC- colon tumors, but folate intake was positively associated with APC+ colon tumors among men. These opposite results may indicate that folate enhances colorectal carcinogenesis through a distinct APC mutated pathway. Š 2006 American Society for Nutrition

    Germline mismatch repair (MMR) gene analyses from English NHS regional molecular genomics laboratories 1996-2020: development of a national resource of patient-level genomics laboratory records.

    No full text
    Peer reviewed: TrueOBJECTIVE: To describe national patterns of National Health Service (NHS) analysis of mismatch repair (MMR) genes in England using individual-level data submitted to the National Disease Registration Service (NDRS) by the NHS regional molecular genetics laboratories. DESIGN: Laboratories submitted individual-level patient data to NDRS against a prescribed data model, including (1) patient identifiers, (2) test episode data, (3) per-gene results and (4) detected sequence variants. Individualised per-laboratory algorithms were designed and applied in NDRS to extract and map the data to the common data model. Laboratory-level MMR activity audit data from the Clinical Molecular Genetics Society/Association of Clinical Genomic Science were used to assess early years' missing data. RESULTS: Individual-level data from patients undergoing NHS MMR germline genetic testing were submitted from all 13 English laboratories performing MMR analyses, comprising in total 16 722 patients (9649 full-gene, 7073 targeted), with the earliest submission from 2000. The NDRS dataset is estimated to comprise >60% of NHS MMR analyses performed since inception of NHS MMR analysis, with complete national data for full-gene analyses for 2016 onwards. Out of 9649 full-gene tests, 2724 had an abnormal result, approximately 70% of which were (likely) pathogenic. Data linkage to the National Cancer Registry demonstrated colorectal cancer was the most frequent cancer type in which full-gene analysis was performed. CONCLUSION: The NDRS MMR dataset is a unique national pan-laboratory amalgamation of individual-level clinical and genomic patient data with pseudonymised identifiers enabling linkage to other national datasets. This growing resource will enable longitudinal research and can form the basis of a live national genomic disease registry
    corecore