650 research outputs found

    The Rubbish Researchers Puzzle

    Get PDF
    The Rubbish Researchers Puzzle is a humorous short story about the Blue-Eyed Islanders Puzzle, cultural insensitivity in logic problems, and the quality of research

    How tight are the limits to land and water use? - Combined impacts of food demand and climate change

    Get PDF
    In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on regional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be expanded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system

    Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect

    Full text link

    The limits to global-warming mitigation by terrestrial carbon removal

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Massive near-term greenhouse gas emissions reduction is a precondition for staying “well below 2°C” global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature “overshoot” in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to “repair” delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract “business-as-usual” emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires > 1.1 Gha of the most productive agricultural areas or the elimination of > 50% of natural forests. In addition, > 100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160–190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable “supporting actor” for strong mitigation if sustainable schemes are established immediately.This study was funded by the German Research Foundation's priority program DFG SPP 1689 on “Climate Engineering – Risks, Challenges and Opportunities?” and specifically the CE-LAND project. T.M.L. was supported by a Royal Society Wolfson Research Merit Award

    Sums of products of Ramanujan sums

    Full text link
    The Ramanujan sum cn(k)c_n(k) is defined as the sum of kk-th powers of the primitive nn-th roots of unity. We investigate arithmetic functions of rr variables defined as certain sums of the products cm1(g1(k))...cmr(gr(k))c_{m_1}(g_1(k))...c_{m_r}(g_r(k)), where g1,...,grg_1,..., g_r are polynomials with integer coefficients. A modified orthogonality relation of the Ramanujan sums is also derived.Comment: 13 pages, revise

    Integrated crop water management might sustainably halve the global food gap

    Get PDF
    As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an 'ambitious' scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.Framework of the Leibniz CompetitionFACCE MACSURPeer Reviewe
    • 

    corecore