776 research outputs found
Wavelength-selective, sequential Q-switching laser cavity
Single-frequency continuous output of laser is converted into series of high-power laser pulses at high repetition rates. Applications include pollutant detection by absorption, laser gain measurements at discrete wavelengths, laser propagation measurement, and laser plasma diagnostics
Recommended from our members
Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal
The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2°C.
We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries.
Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario
Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal
The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2°C.
We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries.
Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario
Recommended from our members
Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution
Human societies depend on the resources ecosystems provide. Particularly since the last century,
human activities have transformed the relationship between nature and society at a global scale. We study this
coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive
network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly
rational imitation of resource use strategies and homophily in the formation of social network ties. The private
and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort.
We show that these social processes can have a profound influence on the environmental state, such as
determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate
that heterogeneously distributed regional resource capacities shift the critical social parameters where this
resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary
models of the planetary social–ecological system, such socio-cultural phenomena as well as regional resource
heterogeneities should receive attention in addition to the processes represented in established Earth system and
integrated assessment model
Macroscopic description of complex adaptive networks co-evolving with dynamic node states
ACKNOWLEDGMENTS This work was carried out within the framework of PIK’s COPAN project. M.W. was supported by the German Federal Ministry for Science and Education via the BMBF Young Investigators Group CoSy-CC2 (Grant No. 01LN1306A). J.F.D. and W.L. acknowledge funding from the Stordalen Foundation (Norway) via the PB.net initiative and BMBF (project GLUES) and J.K. acknowledges the IRTG 1740 funded by Deutsche Forschungsgesellschaft (DFG) (Germany) and FAPESP. We thank R. V. Donner for helpful comments and suggestions on the manuscript and R. Grzondziel and C. Linstead for help with the IBM iDataPlex Cluster at the Potsdam Institute for Climate Impact Research.Peer reviewedPublisher PD
Recommended from our members
Reply to Smith et al.: Social tipping dynamics in a world constrained by conflicting interests
[No abstract available
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
- …