78 research outputs found

    Trondhjemite Leucosomes Generated by Partial Melting of a Hornblende-gabbro (Alvand plutonic complex, Hamedan, NW Iran)

    Get PDF
    This work describes the petrogenesis of in situ and in-source trondhjemite leucosomes generated by low-degree partial melting of the Jurassic Cheshmeh-Ghasaban hornblende-gabbros in the northern Alvand batholith (Hamedan, NW Iran). These leucosomes occur in a metatexite migmatite as patches, net-structures, veinlets, and dikes at scales ranging from a few millimetres to a few metres. They have high SiO2 (mean ≈ 78 wt%) and Na2O (4–5 wt%) with low Al2O3 (wt%), K2 O

    Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons

    Get PDF
    © 2020. Published by The Company of Biologists Ltd. Both the establishment of neuronal polarity and axonal growth are crucial steps in the development of the nervous system. The local translation of mRNAs in the axon provides precise regulation of protein expression, and is now known to participate in axon development, pathfinding and synaptic formation and function. We have investigated the role of miR-26a in early stage mouse primary cortical neuron development. We show that micro-RNA-26a-5p (miR-26a) is highly expressed in neuronal cultures, and regulates both neuronal polarity and axon growth. Using compartmentalised microfluidic neuronal cultures, we identified a local role for miR-26a in the axon, where the repression of local synthesis of GSK3β controls axon development and growth. Removal of this repression in the axon triggers local translation of GSK3β protein and subsequent transport to the soma, where it can impact axonal growth. These results demonstrate how the axonal miR-26a can regulate local protein translation in the axon to facilitate retrograde communication to the soma and amplify neuronal responses, in a mechanism that influences axon development

    Genesis of trondhjemite by low-pressure low-melt fraction anatexis of hornblende-gabbro at Alvand Plutonic Complex (Hamedan, NW Iran): insights from geochemical modelling

    Get PDF
    AbstractAmphibole-dominated dehydration melting of gabbro is the primary process responsible for the genesis of adakites, low-K tonalites, modern trondhjemites, and plagiogranites as well as Archean tonalite-trondhjemite-granodiorite suites that represent the earliest examples of continental crust. Previous literature has mostly focused on the role of Al-rich amphibole during anatexis of a mafic source and many of these studies have investigated this process through experimental melting runs. However, due to experimental boundary conditions, little is known about partial melting of amphibole-bearing mafic rock at temperatures < 800°C for upper crustal conditions (pressure < 500 MPa). Classic and forward thermobarometric modelling suggests that in situ trondhjemite leucosomes, hosted by Cheshmeh-Ghasaban mafic metatexites (Alvand Plutonic Complex, Hamedan, NW Iran), represent a rare natural case study of a low-temperature incipient amphibole-dominated anatectic event of a mafic source with a primary assemblage (Pl+Hbl+Cpx+Bt+Opx) typical of a hornblende-bearing gabbroic rock

    Genesis of Trondhjemite by Low-pressure Fraction Anatexis of Hornblende-gabbro at Alvand Plutonic Complex (Hamedan, NW Iran): Insights from Geochemical Modelling.

    Get PDF
    Amphibole-dominated dehydration melting of gabbro is the primary process responsible for the genesis of adakites, low-K tonalites, modern trondhjemites, and plagiogranites aswell as Archean tonalite-trondhjemite-granodiorite suites that represent the earliest examples of continental crust. Previous literature has mostly focused on the role of Al-rich amphibole during anatexis of a mafic source and many of these studies have investigated this process through experimental melting runs. However, due to experimental boundary conditions, little is known about partial melting of amphibole-bearing mafic rock at temperatures \u3c 800°C for upper crustal conditions (pressure \u3c 500 MPa). Classic and forward thermobarometric modelling suggests that in situ trondhjemite leucosomes, hosted by Cheshmeh-Ghasaban mafic metatexites (Alvand Plutonic Complex, Hamedan, NW Iran), represent a rare natural case study of a low-temperature incipient amphibole-dominated anatectic event of a mafic source with a primary assemblage (Pl+Hbl+Cpx+Bt+Opx) typical of a hornblende-bearing gabbroic rock

    A new approach to deposit homogeneous samples of asbestos fibres for toxicological tests in vitro

    Get PDF
    In this paper we describe the results obtained with a novel method to prepare depositions of asbestos fibres for toxicological tests in vitro. The technique is based on a micro-dispenser, working as an inkjet printer, able to deposit micro-sized droplets from a suspension of fibres in a liquid medium; we used here a highly evaporating liquid (ethanol) to reduce the experimental time, however other solvents could be used. Both the amount and spatial distribution of fibres on the substrate can be controlled by adjusting the parameters of the micro-dispenser such as deposition area, deposition time, uniformity and volume of the deposited liquid. Statistical analysis of images obtained by optical and scanning electron microscopy shows that this technique produces an extremely homogeneous distribution of fibers. Specifically, the number of deposited single fibres is maximized (up to 20 times), a feature that is essential when performing viability tests where agglomerated or untangled fibrous particles need to be avoided

    Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration.

    Get PDF
    Wallerian degeneration of physically injured axons involves a well-defined molecular pathway linking loss of axonal survival factor NMNAT2 to activation of pro-degenerative protein SARM1. Manipulating the pathway through these proteins led to the identification of non-axotomy insults causing axon degeneration by a Wallerian-like mechanism, including several involving mitochondrial impairment. Mitochondrial dysfunction is heavily implicated in Parkinson's disease, Charcot-Marie-Tooth disease, hereditary spastic paraplegia and other axonal disorders. However, whether and how mitochondrial impairment activates Wallerian degeneration has remained unclear. Here, we show that disruption of mitochondrial membrane potential leads to axonal NMNAT2 depletion in mouse sympathetic neurons, increasing the substrate-to-product ratio (NMN/NAD) of this NAD-synthesising enzyme, a metabolic fingerprint of Wallerian degeneration. The mechanism appears to involve both impaired NMNAT2 synthesis and reduced axonal transport. Expression of WLDS and Sarm1 deletion both protect axons after mitochondrial uncoupling. Blocking the pathway also confers neuroprotection and increases the lifespan of flies with Pink1 loss-of-function mutation, which causes severe mitochondrial defects. These data indicate that mitochondrial impairment replicates all the major steps of Wallerian degeneration, placing it upstream of NMNAT2 loss, with the potential to contribute to axon pathology in mitochondrial disorders

    The impact of hydrothermal alteration on the physiochemical characteristics of reservoir rocks: the case of the Los Humeros geothermal field (Mexico)

    Get PDF
    Hydrothermal alteration is a common process in active geothermal systems and can significantly change the physiochemical properties of rocks. To improve reservoir assessment and modeling of high-temperature geothermal resources linked to active volcanic settings, a detailed understanding of the reservoir is needed. The Los Humeros Volcanic Complex, hosting the third largest exploited geothermal field in Mexico, represents a natural laboratory to investigate the impact of hydrothermal processes on the rock properties through andesitic reservoir cores and outcropping analogs. Complementary petrographic and chemical analyses were used to characterize the intensities and facies of hydrothermal alteration. The alteration varies from argillic and propylitic facies characterized by no significant changes of the REE budget indicating an inert behavior to silicic facies and skarn instead showing highly variable REE contents. Unaltered outcrop samples predominantly feature low matrix permeabilities ( 1.67 W m−1 K−1; > 0.91 10–6 m2 s−1), but a significant loss of magnetic susceptibility (10–3–10–6 SI). In particular, this latter characteristic appears to be a suitable indicator during geophysical survey for the identification of hydrothermalized domains and possible pathways for fluids. The lack of clear trends between alteration facies, alteration intensity, and chemical indices in the studied samples is interpreted as the response to multiple and/or repeated hydrothermal events. Finally, the proposed integrated field-based approach shows the capability to unravel the complexity of geothermal reservoir rocks in active volcanic settings
    • …
    corecore