255 research outputs found

    Effects of anisotropic and isotropic LIPSS on polymer filling flow and wettability of micro injection molded parts

    Get PDF
    In micro injection molding, the specific cavity surface texture and roughness directly influence the polymer flow and the heat transfer between polymer melt and mold. In this work, two different types of laser-induced periodic surface structures, linear and hexagonal, were generated, and their impact on the flow length in micro injection molding was evaluated. A complete investigation of the surface treatment effect on the polymer flow was carried out, comparing the performance of an untreated cavity surface with surfaces modified by LIPSS. The phenomenon was examined by localizing the weld lines created by the polymer flowing in two parallel channels having different surface treatments. Several cavity inserts were treated by varying the LIPSS process parameters to generate surfaces with different micro-and nanostructures directions and periodicity. Furthermore, the paper addresses the hydro-phobicity achieved on the micro molded surfaces replicated from mold inserts with different LIPSS-based surface topography. Mold surfaces with linear and hexagonal LIPSS and the respective molded parts were analyzed by optical profilometry and scanning electron microscopy to characterize the cavity surfaces replication and localize the weld lines on the micro injection molded parts

    Effects of the Fractionation of the Nitrogen Fertilization on Root Nitrate Uptake and Vine Agronomic Performance in Pinot Gris Grapevines in a Temperate Climate

    Get PDF
    The study aims to investigate at a physiological and molecular level the root absorption of nitrogen (N) during the annual cycle of grapevine. The study was performed on potted Pinot Gris plants grafted on Kober 5BB and grown for two consecutive years in a semi-controlled environment (Northeast, Italy). The study compared the response of plants N-fertilized in spring (T1), or in spring and in post-harvest (T2) or no-N fertilized (C). Results showed that under our climate conditions nitrate was taken up by the grapevines when applied both in spring or in spring and post-harvest. The nitrate acquisition in T1 roots is mediated at molecular and physiological level by a higher activation of high-affinity nitrate-transport system to take up nitrate in comparison to no-fertilized plants. Comparing the two N fertilization managements, the dynamic of nitrate uptake rates showed different patterns with an overall late response of High-Affinity Transport System when the application of part of N-fertilization was delayed to post-harvest (T2) in comparison to T1. Nevertheless, during the 2 years of the trial the fractionation of N fertilization applied in spring and post-harvest did not negatively affect the yield and quality parameters of vines. An increase of N concentration in T2 roots after two consecutive growing seasons may suggest that the fractionation can lead to beneficial effects on long period. Results of this work contribute to improve the comprehension of N acquisition in grapevine in order to optimize the use of N inputs in vineyard

    Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding

    Get PDF
    Texturing can be used to functionalize the surface of plastic parts and, in particular, to modify the interaction with fluids. Wetting functionalization can be used for microfluidics, medical devices, scaffolds, and more. In this research, hierarchical textures were generated on steel mold inserts using femtosecond laser ablation to transfer on plastic parts surface via injection molding. Different textures were designed to study the effects of various hierarchical geometries on the wetting behavior. The textures are designed to create wetting functionalization while avoiding high aspect ratio features, which are complex to replicate and difficult to manufacture at scale. Nano-scale ripples were generated over the micro-scale texture by creating laser-induced periodic surface structures. The textured molds were then replicated by micro-injection molding using polypropylene and poly(methyl methacrylate). The static wetting behavior was investigated on steel inserts and molded parts and compared to the theoretical values obtained from the Cassie-Baxter and Wenzel models. The experimental results showed correlations between texture design, injection molding replication, and wetting properties. The wetting behavior on the polypropylene parts followed the Cassie-Baxter model, while for PMMA, a composite wetting state of Cassie-Baxter and Wenzel was observed

    Sensitive methods for estimating the anchoring strength of nematic liquid crystals on Langmuir-Blodgett monolayers of fatty acids

    Full text link
    The anchoring of the nematic liquid crystal N-(p-methoxybenzylidene)-p-butylaniline (MBBA) on Langmuir-Blodgett monolayers of fatty acids (COOHCn_{n}H2n+1_{2n+1}) was studied as a function of the length of the fatty acid alkyl chains, nn (n=15,17,19,21n = 15, 17, 19, 21). The monolayers were deposited onto ITO-coated glass plates which were used to assemble sandwich cells of various thickness that were filled with MBBA in the nematic phase. The mechanism of relaxation from the flow-induced quasi-planar to the surface-induced homeotropic alignment was studied for the four decreases linearly with increasing the length of the alkyl chains nn which suggests that the Langmuir-Blodgett film plays a role in the phenomenon. This fact was confirmed by a sensitive estimation of the anchoring strength of MBBA on the fatty acid monolayers after anchoring breaking which takes place at the transition between two electric-field--induced turbulent states, denoted as DSM1 and DSM2. It was found that the threshold electric field for the anchoring breaking, which can be considered as a measure of the anchoring strength, also decreases linearly as nn increases. Both methods thus possess a high sensitivity in resolving small differences in anchoring strength. In cells coated with mixed Langmuir-Blodgett monolayers of two fatty acids (n=15n=15 and n=17n=17) a maximum of the relaxation speed was observed when the two acids were present in equal amount. This observation homeotropic cells by changing the ratio between the components of the surfactant film.Comment: LaTeX article, 20 pages, 15 figures, 17 EPS files. 1 figure added, references moved. Submitted to Phys. Rev.

    L’avvio al lavoro della persona con disabilitΓ  nella prospettiva dei Servizi specialistici di mediazione. Gli esiti di un percorso di formazione e ricerca

    Get PDF
    L'articolo esplora il complesso tema del lavoro per le persone con disabilitΓ . Nell'analisi della situazione italiana si evidenziano gli elementi da monitorare affinchΓ© attraverso l'accesso al lavoro venga promossa l'emancipazione generale del soggetto, nell'ottica della Convenzione ONU sui diritti delle persone con disabilitΓ . A supporto di modalitΓ  operative evidence-based, vengono presentati i risultati di una ricerca-azione svolta con gli operatori della mediazione del lavoro dell'Azienda ULSS di Treviso.The article explores the complex field of employment for people with disabilities. In the analysis of the Italian situation, the elements to be monitored are highlighted so that through access to work an overall emancipation of the person is promoted, in the perspective of the UN Convention on the rights of persons with disabilities. In support of evidence-based operating methods, the results of an action-research carried out with labor mediation operators are presented

    Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines

    Get PDF
    In recent years, the application of nanotechnology for the development of new β€œsmart fertilizers” is regarded as one of the most promising solutions for boosting a more sustainable and modern grapevine cultivation. Despite showing interesting potential benefits over conventional fertilization practices, the use of nanofertilizers in viticulture is still underexplored. In this work, we investigated the effectiveness of non-toxic calcium phosphate nanoparticles (Ca3(PO4)2βˆ™nH2O) doped with urea (U-ACP) as a nitrogen source for grapevine fertilization. Plant tests were performed for two years (2019–2020) on potted adult Pinot gris cv. vines grown under semi-controlled conditions. Four fertilization treatments were compared: N1: commercial granular fertilization (45 kg N haβˆ’1); N2: U-ACP applied in fertigation (36 kg N haβˆ’1); N3: foliar application of U-ACP (36 kg N haβˆ’1); C: control, receiving no N fertilization. Plant nitrogen status (SPAD), yield parameters as well as those of berry quality were analyzed. Results here presented clearly show the capability of vine plants to recognize and use the nitrogen supplied with U-ACP nanoparticles either when applied foliarly or to the soil. Moreover, all of the quali–quantitative parameters measured in vine plants fed with nanoparticles were perfectly comparable to those of plants grown in conventional condition, despite the restrained dosage of nitrogen applied with the nanoparticles. Therefore, these results provide both clear evidence of the efficacy of U-ACP nanoparticles as a nitrogen source and the basis for the development of alternative nitrogen fertilization strategies, optimizing the dosage/benefit ratio and being particularly interesting in a context of a more sustainable and modern viticulture.PSR 2014/2020 Regione Autonoma Friuli Venezia Giuliaβ€”Misure 16.1.1, DGR 1313/2018, DC 398/AGFOR 2020β€”GESOVIT PROJECTFondazione Cariplo, Italy, Grant n. 2016-0648, project: Romancing the stone: size controlled HYdroxyaPATItes for sustainable Agriculture (HYPATIA

    A Feedback Quenched Oscillator Produces Turing Patterning with One Diffuser

    Get PDF
    Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the β€œactivator-inhibitor” models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of kinetic parameters over which patterning should emerge and demonstrate the system's viability using stochastic simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture which can be implemented with relative ease by practitioners and which could serve as a model system for pattern generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-driven mechanisms

    The Evolution of Robust Development and Homeostasis in Artificial Organisms

    Get PDF
    During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems features of morphogenesis in multicellular animals that arise as a consequence of the evolution of development. Using artificial evolution, we evolved cellular automata-based digital organisms that have distinct embryonic and homeostatic phases of development. Although these evolved organisms use a variety of strategies to maintain their form over time, organisms of different types were all found to rapidly recover from environmental damage in the form of wounds. This regenerative response was most robust in an organism with a stratified tissue-like architecture. An evolutionary analysis revealed that evolution itself contributed to the ability of this organism to maintain its form in the face of genetic and environmental perturbation, confirming the results of previous studies. In addition, the exceptional robustness of this organism to surface injury was found to result from an upward flux of cells, driven in part by cell divisions with a stable niche at the tissue base. Given the general nature of the model, our results lead us to suggest that many of the robust systems properties observed in real organisms, including scar-free wound-healing in well-protected embryos and the layered tissue architecture of regenerating epithelial tissues, may be by-products of the evolution of morphogenesis, rather than the direct result of selection
    • …
    corecore