891 research outputs found

    Circumscribed choroidal hemangioma: A case report and literature review

    Get PDF
    AbstractChoroidal hemangioma is a rare congenital ocular tumor that can present as either circumscribed or diffuse. Circumscribed choroidal hemangioma (CCH) typically manifests as a red-orange mass within the posterior pole and appears similar to other ocular conditions, such as choroidal melanoma and choroidal metastasis. Proper diagnosis is crucial and is aided by the use of ancillary testing. CCH itself is benign but can cause secondary complications such as subretinal fluid accumulation and subsequent retinal detachment. If these conditions should arise, several treatment options are available

    Circumscribed choroidal hemangioma: A case report and literature review

    Get PDF
    AbstractChoroidal hemangioma is a rare congenital ocular tumor that can present as either circumscribed or diffuse. Circumscribed choroidal hemangioma (CCH) typically manifests as a red-orange mass within the posterior pole and appears similar to other ocular conditions, such as choroidal melanoma and choroidal metastasis. Proper diagnosis is crucial and is aided by the use of ancillary testing. CCH itself is benign but can cause secondary complications such as subretinal fluid accumulation and subsequent retinal detachment. If these conditions should arise, several treatment options are available

    Measuring Turbulent Dissipation Using a Tethered ADCP

    Get PDF
    The structure function method for estimating the dissipation rate of turbulent kinetic energy, previously validated for measurements from seabed fixed mounts, is applied to data from 1.2-MHz acoustic Doppler current profiler (ADCP) instruments operating in pulse�pulse coherent mode and mounted in midwater below a tethered buoy. Movements of the buoy introduce additional relative velocity components, but it is hypothesized that these flow components should not seriously interfere with the turbulence information because (i) horizontal or vertical translation induces the same flow component in all cells of an ADCP beam and (ii) any rotation of the instrument about its center induces flow components that are normal to the beam direction, and thus neither affect the structure function. This hypothesis is tested by comparing a series of dissipation measurements from a moored ADCP with those from a free-falling Vertical Microstructure Profiler (VMP) shear probe deployed from a nearby research vessel. The results indicate generally good conformity in both mean and variability over almost two decades of dissipation rates. The noise level of the structure function estimates with the pulse�pulse coherent ADCP is close to that of the VMP at ~3 � 10�10 W kg�1. This approach offers the prospect of long time series measurements of dissipation rate from moorings, albeit with restricted vertical range of a few meters

    Dissipation and mixing during the onset of stratification in a temperate lake, Windermere

    Get PDF
    Acoustic Doppler Current Profilers and chains of temperature sensors were used to observe the spring transition to stable stratification over a 55 day period in a temperate lake. Observations of the flow structure were complemented by measurements of dissipation, based on the Structure Function method, near the lake bed and in the upper part of the water column. During complete vertical mixing, wind-driven motions had horizontally isotropic velocities with roughly equal barotropic and baroclinic kinetic energy. Dissipation was closely correlated with the wind-speed cubed, indicating law of the wall scaling, and had peak values of ~1 x 10-5.5 W kg-1 at 10 m depth during maximum wind forcing (W~ 15 m s-1). As stratification developed, the flow evolved into a predominantly baroclinic regime dominated by the first mode internal seiche, with root mean square (rms) axial flow speeds of ~2-3 cm-1; ~ 2.5-times the transverse component. At 2.8 m above the bed, most of the dissipation occurred in a number of strong maxima coinciding with peaks of near-bed flow. In the pycnocline, dissipation was low most of the time, but with pronounced maxima (reaching ~1 x 10-5 W kg-1) closely related to the local velocity shear. The downward diffusive heat flux across the pycnocline over 27.5 days accounted for ~ 70% of the temperature rise in the water column below. Total lake kinetic energy increased by a factor of 3 between mixed and stratified regimes, in spite of reduced wind forcing, indicating less efficient damping in stable conditions

    The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths

    Get PDF
    Vanillyl alcohol oxidase (VAO) is a homo-octameric flavoenzyme belonging to the VAO/PCMH family. Each VAO subunit consists of two domains, the FAD-binding and the cap domain. VAO catalyses, among other reactions, the two-step conversion of p-creosol (2-methoxy-4-methylphenol) to vanillin (4-hydroxy-3-methoxybenzaldehyde). To elucidate how different ligands enter and exit the secluded active site, Monte Carlo based simulations have been performed. One entry/exit path via the subunit interface and two additional exit paths have been identified for phenolic ligands, all leading to the si side of FAD. We argue that the entry/exit path is the most probable route for these ligands. A fourth path leading to the re side of FAD has been found for the co-ligands dioxygen and hydrogen peroxide. Based on binding energies and on the behaviour of ligands in these four paths, we propose a sequence of events for ligand and co-ligand migration during catalysis. We have also identified two residues, His466 and Tyr503, which could act as concierges of the active site for phenolic ligands, as well as two other residues, Tyr51 and Tyr408, which could act as a gateway to the re side of FAD for dioxygen. Most of the residues in the four paths are also present in VAO’s closest relatives, eugenol oxidase and p-cresol methylhydroxylase. Key path residues show movements in our simulations that correspond well to conformations observed in crystal structures of these enzymes. Preservation of other path residues can be linked to the electron acceptor specificity and oligomerisation state of the three enzymes. This study is the first comprehensive overview of ligand and co-ligand migration in a member of the VAO/PCMH family, and provides a proof of concept for the use of an unbiased method to sample this process.Enzymes are bionanomachines, which speed up chemical reactions in organisms. To understand how they achieve that, we need to study their mechanisms. Computational enzymology can show us what happens in the enzyme’s active site during a reaction. But molecules need first to reach the active site before a reaction can start. The process of substrate entry and product exit to the active site is often neglected when studying enzymes. However, these two events are of fundamental importance to the proper functioning of any enzyme. We are interested in these dynamic processes to complete our understanding of the mode of action of enzymes. In our work, we have studied substrate and product migration in vanillyl alcohol oxidase. This enzyme can produce the flavour vanillin and enantiopure alcohols, but also catalyses other reactions. The named products are of interest to the flavour- and fine-chemical industries.This work was supported by: FP7-KBBE- 2013-7-613549 http://cordis.europa.eu/ programme/rcn/851_en.html (see INDOX project (http://indoxproject.eu), funding received by: GG MFL VG WJHvB; and CTQ2016-79138-R, http:// www.mineco.gob.es/portal/site/mineco/?lang_ choosen=en, funding received by: MFL VG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer ReviewedPostprint (published version

    A high-sensitivity polarimeter using a ferro-electric liquid crystal modulator

    Get PDF
    We describe the HIgh Precision Polarimetric Instrument (HIPPI), a polarimeter built at UNSW (The University of New South Wales) Australia and used on the Anglo-Australian Telescope (AAT). HIPPI is an aperture polarimeter using a ferro-electric liquid crystal modulator. HIPPI measures the linear polarization of starlight with a sensitivity in fractional polarization of ∼4 × 10−6 on low-polarization objects and a precision of better than 0.01 per cent on highly polarized stars. The detectors have a high dynamic range allowing observations of the brightest stars in the sky as well as much fainter objects. The telescope polarization of the AAT is found to be 48 ± 5 × 10−6 in the g′ bandPeer reviewedFinal Accepted Versio

    Ab Initio and Statistical Rate Theory Exploration of the CH (X2Π) + OCS Gas-Phase Reaction

    Get PDF
    The first theoretical results regarding the gas-phase reaction mechanism and kinetics of the CH (X2Π) + OCS reaction are presented here. This reaction has a proposed importance in the removal of OCS in regions of the interstellar medium (ISM) and has the potential to form the recently observed HCS/HSC isomers, with both constitutional isomers having recently been observed in the L483 molecular cloud in a 40:1 ratio. Statistical rate theory simulations were performed on stationary points along the reaction potential energy surface (PES) obtained from ab initio calculations at the RO-CCSD(T)/aug-cc-pV(Q+d)Z//M06-2X-D3/aug-cc-pV(Q+d)Z level of theory over the temperature and total density range of 150–3000 K and 1011–1024 cm–3, respectively, using a Master Equation analysis. Exploration of the reaction potential energy surface revealed that all three pathways identified to create CS + HCO products required surmounting barriers of 16.5 kJ mol–1 or larger when CH approached the oxygen side of OCS, rendering this product formation negligible below 1000 K, and certainly under low-temperature ISM conditions. In contrast, when CH approaches the sulfur side of OCS, only submerged barriers are found along the reaction potential energy surface to create HCCO + S or CO + HCS, both of which are formed via a strongly bound OCC(H)S intermediate (−358.9 kJ mol–1). Conversion from HCS to HSC is possible via a barrier of 77.8 kJ mol–1, which is still −34.1 kJ mol–1 below the CH + OCS entrance channel. No direct route from CH + OCS to H + CO + CS was found from our ab initio calculations. Rate theory simulations suggest that the reaction has a strong negative temperature dependence, in accordance with the barrierless addition of CH to the sulfur side of OCS. Product branching fractions were also determined from MESMER simulations over the same temperature and total density range. The product branching fraction of CO + HCS reduces from 79% at 150 K to 0.0% at 800 K, while that of HCS dissociation to H + CS + CO increases from 22% at 150 K to 100% at 800 K. The finding of CO + HCS as the major product at the low temperatures relevant to the ISM, instead of H + CS + CO, is in opposition to the current supposition used in the KIDA database and should be adapted in astrochemical models as another source of the HCS isomer

    Background-free detection of trapped ions

    Full text link
    We demonstrate a Doppler cooling and detection scheme for ions with low-lying D levels which almost entirely suppresses scattered laser light background, while retaining a high fluorescence signal and efficient cooling. We cool a single ion with a laser on the 2S1/2 to 2P1/2 transition as usual, but repump via the 2P3/2 level. By filtering out light on the cooling transition and detecting only the fluorescence from the 2P_3/2 to 2S1/2 decays, we suppress the scattered laser light background count rate to 1 per second while maintaining a signal of 29000 per second with moderate saturation of the cooling transition. This scheme will be particularly useful for experiments where ions are trapped in close proximity to surfaces, such as the trap electrodes in microfabricated ion traps, which leads to high background scatter from the cooling beam

    All-Optical Broadband Excitation of the Motional State of Trapped Ions

    Full text link
    We have developed a novel all-optical broadband scheme for exciting, amplifying and measuring the secular motion of ions in a radio frequency trap. Oscillation induced by optical excitation has been coherently amplified to precisely control and measure the ion's secular motion. Requiring only laser line-of-sight, we have shown that the ion's oscillation amplitude can be precisely controlled. Our excitation scheme can generate coherent motion which is robust against variations in the secular frequency. Therefore, our scheme is ideal to excite the desired level of oscillatory motion under conditions where the secular frequency is evolving in time. Measuring the oscillation amplitude through Doppler velocimetry, we have characterized the experimental parameters and compared them with a molecular dynamics simulation which provides a complete description of the system.Comment: 8 pages, 10 figure

    BINARY AND GREY-VALUE SKELETONS: METRICS AND ALGORITHMS

    Full text link
    • …
    corecore