22,312 research outputs found

    Identifying Health Centers in Honduras Infested with Rhodnius Prolixus Using the Seroprevalence of Chagas Disease in Children Younger than 13 Years.

    Get PDF
    The objective of this study is to determine if a Chagas disease protocol starting with a serological survey is as reliable at identifying insect-infested areas as one using the gold standard entomological survey. The study found that health center areas infested with Rhodnius prolixus were identified using a threshold seroprevalence of 0.1%. The serological survey took half the time and was 30% less expensive than the entomological survey. Developing countries with limited resources may find this strategy useful in combating Chagas disease. This strategy also identifies seropositive children, which facilitates their treatment

    Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    Get PDF
    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy

    AN EXPERIMENTAL INVESTIGATION OF GASEOUS-FILM COOLING OF A ROCKET MOTOR

    Get PDF
    Gaseous-film cooling of rocket combustion chambe

    A radial mode ultrasonic horn for the inactivation of <i>Escherichia coli</i> K12

    Get PDF
    Tuned cylindrical radial mode ultrasonic horns offer advantages over ultrasonic probes in the design of flow-through devices for bacterial inactivation. This study presents a comparison of the effectiveness of a radial horn and probe in the inactivation of Escherichia coli K12. The radial horn is designed using finite element analysis and the predicted modal parameters are validated using experimental modal analysis. A validated finite element model of the probe is also presented. Visual studies of the cavitation fields produced by the radial horn and probe are carried out using luminol and also backlighting to demonstrate the advantages of radial horns in producing a more focused cavitation field with widely dispersed streamers. Microbiological studies show that, for the same power density, better inactivation of E. coli K12 is achieved using the radial horn and, also, the radial horn offers greater achievable power density resulting in further improvements in bacterial inactivation. The radial horn is shown to be more effective than the probe device and offers opportunities to design in-line flow-through devices for processing applications

    Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    Get PDF
    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans

    Acoustic and aerodynamic performance of a 1.83 meter (6 foot) diameter 1.2 pressure ratio fan (QF-6)

    Get PDF
    A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle

    A robust design methodology suitable for application to one-off products

    Get PDF
    Robust design is an activity of fundamental importance when designing large, complex, one-off engineering products. Work is described which is concerned with the application of the theory of design of experiments and stochastic optimization methods to explore and optimize at the concept design stage. The discussion begins with a description of state-of-the-art stochastic techniques and their application to robust design. The content then focuses on a generic methodology which is capable of manipulating design algorithms that can be used to describe a design concept. An example is presented, demonstrating the use of the system for the robust design of a catamaran with respect to seakeeping

    Using Self-Adaptive Evolutionary Algorithms to Evolve Dynamism-Oriented Maps for a Real Time Strategy Game

    Get PDF
    9th International Conference on Large Scale Scientific Computations. The final publication is available at link.springer.comThis work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based on their confrontations. Both approaches rely on conducting several games on the map under scrutiny using top artificial intelligence (AI) bots for the game. Statistic gathered during these games are then transferred to a fuzzy system that determines the map's level of dynamism. We use an evolutionary algorithm featuring self-adaptation of mutation parameters and variable-length chromosomes (which means maps of different sizes) to produce increasingly dynamic maps.TIN2011-28627-C04-01, P10-TIC-608
    • 

    corecore