4,110 research outputs found

    CONSUMER KNOWLEDGE OF FOOD BIOTECHNOLOGY: A DESCRIPTIVE STUDY OF U.S. RESIDENTS

    Get PDF
    A national survey conducted by the Food Policy Institute demonstrates the lack of knowledge and awareness most Americans have of genetically modified foods. The paper provides insight into public perceptions of food biotechnology's risks and benefits and a preliminary examination of consumers' stated preferences for genetically modified functional foods.Research and Development/Tech Change/Emerging Technologies,

    An Interview with Fanny Howe

    Get PDF
    Fanny Howe, author of the The Needle’s Eye: Passing through Youth, visited the College of Saint Benedict and Saint John’s University on January 22, 2017. Fanny Howe was a finalist for the National Book Award for her book of poetry Second Childhood and her fiction has been considered as a finalist for the Man Booker International Prize. We were fortunate enough to spend a sunny afternoon in our dining room with Fanny and hear her discuss her thoughts on literature, religion, life, and politics

    Changing the νmax⁥\nu_{\max} Scaling Relation: The Need For a Mean Molecular Weight Term

    Get PDF
    The scaling relations that relate the average asteroseismic parameters Δν\Delta \nu and νmax⁡\nu_{\max} to the global properties of stars are used quite extensively to determine stellar properties. While the Δν\Delta \nu scaling relation has been examined carefully and the deviations from the relation have been well documented, the νmax⁡\nu_{\max} scaling relation has not been examined as extensively. In this paper we examine the νmax⁡\nu_{\max} scaling relation using a set of stellar models constructed to have a wide range of mass, metallicity, and age. We find that as with Δν\Delta \nu, νmax⁡\nu_{\max} does not follow the simple scaling relation. The most visible deviation is because of a mean molecular weight term and a Γ1\Gamma_1 term that are commonly ignored. The remaining deviation is more difficult to address. We find that the influence of the scaling relation errors on asteroseismically derived values of log⁡g\log g are well within uncertainties. The influence of the errors on mass and radius estimates is small for main sequence and subgiants, but can be quite large for red giants.Comment: 15 pages, 14 figures, accepted for publication in Ap

    Evaluating weaknesses of "perceptual-cognitive training" and "brain training" methods in sport: An ecological dynamics critique

    Get PDF
    The recent upsurge in "brain training and perceptual-cognitive training," proposing to improve isolated processes, such as brain function, visual perception, and decision-making, has created significant interest in elite sports practitioners, seeking to create an "edge" for athletes. The claims of these related "performance-enhancing industries" can be considered together as part of a process training approach proposing enhanced cognitive and perceptual skills and brain capacity to support performance in everyday life activities, including sport. For example, the "process training industry" promotes the idea that playing games not only makes you a better player but also makes you smarter, more alert, and a faster learner. In this position paper, we critically evaluate the effectiveness of both types of process training programmes in generalizing transfer to sport performance. These issues are addressed in three stages. First, we evaluate empirical evidence in support of perceptual-cognitive process training and its application to enhancing sport performance. Second, we critically review putative modularized mechanisms underpinning this kind of training, addressing limitations and subsequent problems. Specifically, we consider merits of this highly specific form of training, which focuses on training of isolated processes such as cognitive processes (attention, memory, thinking) and visual perception processes, separately from performance behaviors and actions. We conclude that these approaches may, at best, provide some "general transfer" of underlying processes to specific sport environments, but lack "specificity of transfer" to contextualize actual performance behaviors. A major weakness of process training methods is their focus on enhancing the performance in body "modules" (e.g., eye, brain, memory, anticipatory sub-systems). What is lacking is evidence on how these isolated components are modified and subsequently interact with other process "modules," which are considered to underlie sport performance. Finally, we propose how an ecological dynamics approach, aligned with an embodied framework of cognition undermines the rationale that modularized processes can enhance performance in competitive sport. An ecological dynamics perspective proposes that the body is a complex adaptive system, interacting with performance environments in a functionally integrated manner, emphasizing that the inter-relation between motor processes, cognitive and perceptual functions, and the constraints of a sport task is best understood at the performer-environment scale of analysis

    FUNCTION OF PHLOEM-BORNE INFORMATION MACROMOLECULES IN INTEGRATING PLANT GROWTH & DEVELOPMENT

    Get PDF
    Studies on higher plants have revealed the operation of cell-to-cell and long-distance communication networks that mediate the transport of information macromolecules, such as proteins and RNA. Based on the findings from this DOE-funded project and results from other groups, it is now well established that the enucleate sieve tube system of the angiosperms contains a complex set of proteins including RNA binding proteins as well as a unique population of RNA molecules, comprised of both mRNA and small RNA species. Hetero-grafting experiments demonstrated that delivery of such RNA molecules, into the scion, is highly correlated with changes in developmental phenotypes. Furthermore, over the course of this project, our studies showed that plasmodesmata and the phloem are intimately involved in the local and systemic spread of sequence-specific signals that underlie gene silencing in plants. Major advances were also made in elucidating the underlying mechanisms that operate to mediate the selective entry and exit of proteins and RNA into and out of the phloem translocation stream. Our pioneering studies identified the first plant protein with the capacity to both bind specifically to small RNA molecules (si-RNA) and mediate in the cell-to-cell movement of such siRNA. Importantly, studies conducted with support from this DOE program also yielded a detailed characterization of the first phloem-mobile RNP complex isolated from pumpkin, namely the CmRBP50-RNP complex. This RNP complex was shown to bind, in a sequence-specific manner, to a set of transcripts encoding for transcription factors. The remarkable stability of this CmRBP50-RNP complex allows for long-distance delivery of bound transcripts from mature leaves into developing tissues and organs. Knowledge gained from this project can be used to exert control over the long-distance signaling networks used by plants to integrate their physiological and developmental programs at a whole plant level. Eventually, this information will aid in the engineering of elite plant lines with optimal traits for plant growth under non-ideal conditions, enhanced biomass and/or seed yield, and directed carbon allocation for efficient and sustainable biofuels production

    The Organizational Politics of Defense

    Get PDF

    Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    Full text link
    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)-molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤1%\leq 1 \%. In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼1∗10−4\sim 1*10^{-4} and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of \textit{Hedera helix} leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll \textit{a} levels measured over the same period by means of UV-Vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.Comment: 29 pages, 6 figure

    Spitzer observations of the Hyades: Circumstellar debris disks at 625 Myr of age

    Full text link
    We use the Spitzer Space Telescope to search for infrared excess at 24, 70, and 160 micron due to debris disks around a sample of 45 FGK-type members of the Hyades cluster. We supplement our observations with archival 24 and 70 micron Spitzer data of an additional 22 FGK-type and 11 A-type Hyades members in order to provide robust statistics on the incidence of debris disks at 625 Myr of age an era corresponding to the late heavy bombardment in the Solar System. We find that none of the 67 FGK-type stars in our sample show evidence for a debris disk, while 2 out of the 11 A-type stars do so. This difference in debris disk detection rate is likely to be due to a sensitivity bias in favor of early-type stars. The fractional disk luminosity, L_dust/L*, of the disks around the two A-type stars is ~4.0E-5, a level that is below the sensitivity of our observations toward the FGK-type stars. However, our sensitivity limits for FGK-type stars are able to exclude, at the 2-sigma level, frequencies higher than 12% and 5% of disks with L_dust/L* > 1.0E-4 and L_dust/L* > 5.0E-4, respectively. We also use our sensitivity limits and debris disk models to constrain the maximum mass of dust, as a function of distance from the stars, that could remain undetected around our targets.Comment: 33 pages, 11 figures, accepted by Ap

    Recent Developments

    Get PDF

    A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.).

    Get PDF
    Key messageGenome resolution of a major QTL associated with the Rk locus in cowpea for resistance to root-knot nematodes has significance for plant breeding programs and R gene characterization. Cowpea (Vigna unguiculata L. Walp.) is a susceptible host of root-knot nematodes (Meloidogyne spp.) (RKN), major plant-parasitic pests in global agriculture. To date, breeding for host resistance in cowpea has relied on phenotypic selection which requires time-consuming and expensive controlled infection assays. To facilitate marker-based selection, we aimed to identify and map quantitative trait loci (QTL) conferring the resistance trait. One recombinant inbred line (RIL) and two F2:3 populations, each derived from a cross between a susceptible and a resistant parent, were genotyped with genome-wide single nucleotide polymorphism (SNP) markers. The populations were screened in the field for root-galling symptoms and/or under growth-chamber conditions for nematode reproduction levels using M. incognita and M. javanica biotypes. One major QTL was mapped consistently on linkage group VuLG11 of each population. By genotyping additional cowpea lines and near-isogenic lines derived from conventional backcrossing, we confirmed that the detected QTL co-localized with the genome region associated with the Rk locus for RKN resistance that has been used in conventional breeding for many decades. This chromosomal location defined with flanking markers will be a valuable target in marker-assisted breeding and for positional cloning of genes controlling RKN resistance
    • …
    corecore