14 research outputs found

    Large trilobites in a stress-free Early Ordovician environment

    Get PDF
    International audienceUnderstanding variations in body-size is essential for deciphering the response of an organism to its surrounding environmental conditions and its ecological adaptations. In modern environments, large marine animals are mostly found in cold waters. However, numerous parameters can influence body size variations other than temperatures, such as oxygenation, nutrient availability, predation, or physical disturbances by storms. Here, we investigate trilobite size variations in the Lower Ordovician Fezouata Shale deposited in a cold water environment. Trilobite assemblages dominated by small-to normal-sized specimens that are few cm in length are found in proximal and intermediate settings, while those comprising larger taxa more than 20cm in length are found in the most distal environment of the Fezouata Shale. Drill core material from distal settings shows that sedimentary rocks hosting large trilobites preserved in-situ are extensively bioturbated with a high diversity of trace fossils, indicating that oxygen and nutrients were available in this environment. In intermediate and shallow settings, bioturbation is less extensive and shallower in depth. The rarity of storm events (minimal physical disturbance) and the lack of predators in deep environments in comparison to shallower settings would have also helped trilobites attain larger body sizes. This highly resolved spatial study investigating the effects of numerous biotic and abiotic parameters on body size has wider implications for the understanding of size fluctuations over geological time

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure

    Reinforced Concretes of Tomorrow: Corrosion Behaviour according to Exposure Classes

    Get PDF
    Reinforced concrete is the most widely used building material but its durability in terms of concrete cover performance and corrosion of steel rebar is still a key point to be studied. To address this topic, within the frame of the national project PERFDUB, two series of eleven reinforced concrete specimens (with metric dimensions) were cast with innovative concrete mixes representative of the French experience, two shapes of rebar and two concrete covers. Then, these specimens were exposed in two natural exposure sites, one in Epernon for carbonation (XC4) and a second one in La Rochelle in the Atlantic Ocean in a tidal zone for chloride ions (XS3m). Their corrosion was carried out using non-destructive testing. In addition, in order to follow the corrosion evolution more accurately in a continuous way, two series of three specimens were casted with embedded sensors and were exposed in two other outdoor sites in Marne-la-Vallée (XC4) and in Eqiom facility (XS3e). The first results of this 20-year project in terms of corrosion of these reinforced concrete specimens obtained with laboratory and field equipment and with monitoring are presented in this paper

    Pour une démocratie socio-environnementale : cadre pour une plate-forme participative « transition écologique »

    Get PDF
    Contribution publiée in Penser une démocratie alimentaire Volume II – Proposition Lascaux entre ressources naturelles et besoins fondamentaux, F. Collart Dutilleul et T. Bréger (dir), Inida, San José, 2014, pp. 87-111.International audienceL’anthropocène triomphant actuel, avec ses forçages environnementaux et sociaux, est à l’origine de l’accélération des dégradations des milieux de vie sur Terre et de l’accentuation des tensions sociales et géopolitiques. Passer à un anthropocène de gestion équitable, informé et sobre vis-à-vis de toutes les ressources et dans tous les secteurs d’activité (slow anthropocene), impose une analyse préalable sur l’ensemble des activités et des rapports humains. Cette transition dite « écologique », mais en réalité à la fois sociétale et écologique, est tout sauf un ajustement technique de secteurs dits prioritaires et technocratiques. Elle est avant tout culturelle, politique et philosophique au sens propre du terme. Elle est un horizon pour des trajectoires de développement humain, pour des constructions sociales et économiques, censées redéfinir socialement richesse, bien-être, travail etc. La dénomination « transition écologique » est largement véhiculée, mais ses bases conceptuelles ne sont pas entièrement acquises ni même élaborées. Dans ce contexte, les étudiants en première année de Master BioSciences à l’Ecole Normale Supérieure (ENS) de Lyon ont préparé une première étude analytique de ce changement radical et global de société pour mieux comprendre dans quelle société ils souhaitent vivre, en donnant du sens aux activités humaines présentes et à venir. Une trentaine de dossiers sur divers secteurs d’activités et acteurs de la société ont été produits et ont servis de support à cette synthèse. Plus largement, le but est de construire un socle conceptuel et une plate-forme de travail sur lesquels les questions de fond, mais aussi opérationnelles, peuvent être posées et étudiées en permanence. Cette démarche participative est ouverte à la collectivité sur le site http://institutmichelserres.ens-lyon.fr/

    Assessing solar resource and photovoltaic production in Tahiti from ground-based measurements

    No full text
    This study focuses on the solar resource available at Faaa, Tahiti (17.5°S, 149.5°W) thanks to 10 year-long solar irradiance time series. Faaa’s global horizontal irradiance ranges from 14 MJ.m-2.day-1 (June) to 21 MJ.m-2.day-1 (November) in agreement with the sun’s annual path, while clearness index ranges from 0.5 (January) to 0.67 (July), in agreement with the wet and dry seasons. The Global Solar Atlas satellite-derived dataset shows acceptable relative error when compared to Faaa in situ measurements. This product could then be used for other coastal areas of Tahiti. The annual energy output of a single PV module is 256.7 kWh, which corresponds to 7 % of the annual consumption of a typical household in Tahiti. The capacity factor reaches 22.5 %, which makes Faaa a good site for harnessing solar resource

    Concrete of tomorrow: corrosion performances in marine environment

    No full text
    Concrete is the most used construction material worldwide, but if often faces durability issues due to rebar corrosion, and cement production can be energy consuming. Attempts to improve its resilience versus corrosion while reducing its carbon footprint are ongoing at an international level. In this objective, in France within the framework of the national project PERFDUB, a series of reinforced concrete walls were cast with innovative concrete designs, two shapes of rebars and two concrete covers. The standard performances of the different concrete mix designs were evaluated at a laboratory scale. Then the walls were exposed in the French La Rochelle harbor, in the tidal zone in order to monitor the evolution of the corrosion of the bars for a period of twenty years. The first results of the electrochemical follow-up of these reinforced walls are presented in this paper

    Large trilobites in a stress-free Early Ordovician environment

    No full text
    Understanding variations in body size is essential for deciphering the response of an organism to its surrounding environmental conditions and its ecological adaptations. In modern environments, large marine animals are mostly found in cold waters. However, numerous parameters can influence body-size variations other than temperatures, such as oxygenation, nutrient availability, predation or physical disturbances by storms. Here, we investigate trilobite size variations in the Lower Ordovician Fezouata Shale deposited in a cold-water environment. Trilobite assemblages dominated by small- to normal-sized specimens that are a few centimetres in length are found in proximal and intermediate settings, while those comprising larger taxa more than 20 cm in length are found in the most distal environment of the Fezouata Shale. Drill core material from distal settings shows that sedimentary rocks hosting large trilobites preserved in situ are extensively bioturbated with a high diversity of trace fossils, indicating that oxygen and nutrients were available in this environment. In intermediate and shallow settings, bioturbation is less extensive and shallower in depth. The rarity of storm events (minimal physical disturbance) and the lack of predators in deep environments in comparison to shallower settings would also have helped trilobites attain larger body sizes. This highly resolved spatial study investigating the effects of numerous biotic and abiotic parameters on body size has wider implications for the understanding of size fluctuations over geological time
    corecore