48 research outputs found

    Virtual Plants Need Water Too: Functional-Structural Root System Models in the Context of Drought Tolerance Breeding

    Get PDF
    Developing a sustainable agricultural model is one of the great challenges of the coming years. The agricultural practices inherited from the Green Revolution of the 1960s show their limits today, and new paradigms need to be explored to counter rising issues such as the multiplication of climate-change related drought episodes. Two such new paradigms are the use of functional-structural plant models to complement and rationalize breeding approaches and a renewed focus on root systems as untapped sources of plant amelioration. Since the late 1980s, numerous functional and structural models of root systems were developed and used to investigate the properties of root systems in soil or lab-conditions. In this review, we focus on the conception and use of such root models in the broader context of research on root-driven drought tolerance, on the basis of root system architecture (RSA) phenotyping. Such models result from the integration of architectural, physiological and environmental data. Here, we consider the different phenotyping techniques allowing for root architectural and physiological study and their limits. We discuss how QTL and breeding studies support the manipulation of RSA as a way to improve drought resistance. We then go over the integration of the generated data within architectural models, how those architectural models can be coupled with functional hydraulic models, and how functional parameters can be measured to feed those models. We then consider the assessment and validation of those hydraulic models through confrontation of simulations to experimentations. Finally, we discuss the up and coming challenges facing root systems functional-structural modeling approaches in the context of breeding

    Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation

    Get PDF
    International audienceRoot architecture plays an important role in water and nutrient acquisition and in the ability of the plant to adapt to the soil. Lateral root development is the main determinant of the shape of the root system and is controlled by external factors such as nutrient concentration. Here it is shown that lateral root initiation and root gravitropism, two processes that are regulated by auxin, are co-regulated in Arabidopsis. A mathematical model was generated that can predict the effects of gravistimulations on lateral root initiation density and suggests that lateral root initiation is controlled by an inhibitory fields mechanism. Moreover, gene transactivation experiments suggest a mechanism involving a single auxin transport route for both responses. Finally, co-regulation may offer a selective advantage by optimizing soil exploration as supported by a simple quantitative analysis

    Vertex-element models for anisotropic growth of elongated plant organs

    Get PDF
    New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and these models fail to capture the mechanical properties of cell walls in sufficient detail. We describe a vertex-element model which resolves individual cells and includes anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division whilst still being computationally efficient. We show that detailed consideration of the cell walls in the plane of a 2D simulation is necessary when cells have large aspect ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid anomalous transverse swelling. We explore how differences in the mechanical properties of cells across an organ can result in bending and how cellulose microfibril orientation affects macroscale growth. We also demonstrate that the model can be used to simulate growth on realistic geometries, for example that of the primary root apex, using moderate computational resources. The model shows how macroscopic root shape can be sensitive to fine-scale cellular geometries

    The role of hydraulics FSPMs in the context of root breeding : a case study on Pearl Millet

    Get PDF
    Developing a sustainable agricultural model is one of the great challenges of the coming years. The agricultural practices inherited from the Green Revolution of the 1960s show their limits today, and new paradigms need to be explored in the context of counter rising issues such as the multiplication of climate-change related drought episodes. Two such new paradigms are the use of functional-structural plant models to complement and rationalize breeding approaches and a renewed focus on root systems as untapped sources of plant improvement. Since the late 1980s, numerous functional and structural models of root systems were developed and used to investigate the properties of root systems in soil or lab-conditions. In this talk, we present a review on the use of multiscale functional-structural hydraulic root models in the context of drought tolerance breeding. We discuss how root models predictions can be linked to breeding studies to improve plant resistance to drought and how they can be validated to demonstrate models reliability and use. To illustrate this topic, we present a new structural model of pearl millet root system growth dynamics, combining stochastic and data-driven modules. The model is capable of simulating the development of observed root phenotypic variability of two millet genotypes chosen for their contrasted root traits. Model description, principle, assumptions, formalism and simulations will be presented during the talk

    Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots

    Get PDF
    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize of early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed 3 distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal

    An Auxin Transport-Based Model of Root Branching in Arabidopsis thaliana

    Get PDF
    Root architecture is a crucial part of plant adaptation to soil heterogeneity and is mainly controlled by root branching. The process of root system development can be divided into two successive steps: lateral root initiation and lateral root development/emergence which are controlled by different fluxes of the plant hormone auxin. While shoot architecture appears to be highly regular, following rules such as the phyllotactic spiral, root architecture appears more chaotic. We used stochastic modeling to extract hidden rules regulating root branching in Arabidopsis thaliana. These rules were used to build an integrative mechanistic model of root ramification based on auxin. This model was experimentally tested using plants with modified rhythm of lateral root initiation or mutants perturbed in auxin transport. Our analysis revealed that lateral root initiation and lateral root development/emergence are interacting with each other to create a global balance between the respective ratio of initiation and emergence. A mechanistic model based on auxin fluxes successfully predicted this property and the phenotype alteration of auxin transport mutants or plants with modified rythms of lateral root initiation. This suggests that root branching is controlled by mechanisms of lateral inhibition due to a competition between initiation and development/emergence for auxin

    Plant systems biology : methods and protocols

    No full text
    This second edition volume expands on the previous edition with an update on the latest techniques used to study plant systems biology on three specific scales: the molecular level, the tissue level, and the whole plant. Chapters cover topics such as gene regulatory network inference and dynamic modeling using ordinary differential equations or Boolean formalisms; protocols for at-will induction of plant aerial or root organs, or quantification of tissue mechanical properties; mathematical modeling of plant tissue using SimuPlant or VirtualLeaf; and simulating crop root systems using OpenSimRoot or R-SWMS. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols or software tutorials, and tips on troubleshooting and avoiding known pitfalls

    Plant systems biology : lessons for teaching

    No full text
    Systems biology is the study of biological interactions. These interactions exist between biological entities at every scale, from genes to population, and create incredibly complex networks of feedbacks responsible for emerging behaviors. To study these behaviors, biologists can use models based on mathematical and computational formalisms grounded on vast existing corpus of theoretical work. This chapter develops an overview of this process of plant systems biology study from the point of view of a teaching course, and introduces the methods and studies presented in this second edition of the "Plant Systems Biology" book series
    corecore