20 research outputs found

    Unilateral enlarged vestibular aqueduct syndrome and bilateral endolymphatic hydrops

    Get PDF
    Enlarged vestibular aqueduct (EVA) syndrome is a common congenital inner ear malformation characterized by a vestibular aqueduct with a diameter larger than 1.5 mm, mixed or sensorineural hearing loss that ranges from mild to profound, and vestibular disorders that may be present with a range from mild imbalance to episodic objective vertigo. In our study, we present the case of a patient with unilateral enlarged vestibular aqueduct and bilateral endolymphatic hydrops (EH). EH was confirmed through anamnestic history and audiological exams; EVA was diagnosed using high-resolution CT scans and MRI images. Therapy included intratympanic infusion of corticosteroids with a significant hearing improvement, more evident in the ear contralateral to EVA. Although most probably unrelated, EVA and EH may present with similar symptoms and therefore the diagnostic workup should always include the proper steps to perform a correct diagnosis. Association between progression of hearing loss and head trauma in patients with a diagnosis of EVA syndrome is still uncertain; however, these individuals should be advised to avoid activities that increase intracranial pressure to prevent further hearing deterioration. Intratympanic treatment with steroids is a safe and well-tolerated procedure that has demonstrated its efficacy in hearing, tinnitus, and vertigo control in EH

    Ocular vestibular evoked myogenic potentials and intravestibular intralabyrinthine schwannomas.

    Get PDF
    Intravestibular intralabyrinthine schwannomas (ILSs) are uncommon benign tumors that arise from the sac-cular, utricular, and lateral and superior ampullary nerves. According to the literature, there is an average delay of 8 years between the onset of symptoms and diagnosis. Te diagnosis is based on an audiovestibular examination and magnetic resonance imaging (MRI). We describe a case of intravestibular ILS in which we included the ocular vestibular evoked myogenic potentials (oVEMPs) test in the diagnostic workup. The oVE-MPs test is a relatively new neurophysiologic diagnostic modality that evaluates the superior vestibular pathway and the ascending contralateral pathway through the vestibulo-ocular reflex. In our case, a 65-year-old man presented with progressive right-sided sensorineu-ral hearing loss, dizziness, and tinnitus and fullness in his right ear. Audiovestibular examination and MRI detected an intravestibular ILS on the right. We found that oVEMPs were absent on the contralateral side, which contributed to the diagnostic process. Te detection of oVEMPs can provide detailed information on the functionality of the macula of the utricle and the lateral and superior ampullary nerves, with a precise identification of the affected area. Based on our findings, we discuss the role of oVEMPs in the diagnosis of an intravestibular ILS

    A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity

    Get PDF
    We previously identified the lpa1 (low phytic acid) 280-10 line that carries a mutation conferring a 90% reduction in phytic acid (InsP6) content. In contrast to other lpa mutants, lpa1(280-10) does not display negative pleiotropic effects. In the present paper, we have identified the mutated gene and analysed its impact on the phytic acid pathway. Here, we mapped the lpa1(280-10) mutation by bulk analysis on a segregating F2 population, an then, by comparison with the soybean genome, we identified and sequenced a candidate gene. The InsP6 pathway was analysed by gene expression and quantification of metabolites. The mutated Pvmrp1(280-10) cosegregates with the lpa1(280-10) mutation, and the expression level of several genes of the InsP6 pathway are reduced in the lpa1(280-10) mutant as well as the inositol and raffinosaccharide content. PvMrp2, a very similar paralogue of PvMrp1 was also mapped and sequenced. The lpa1 mutation in beans is likely the result of a defective Mrp1 gene (orthologous to the lpa genes AtMRP5 and ZmMRP4), while its Mrp2 paralog is not able to complement the mutant phenotype in the seed. This mutation appears to down-regulate the InsP6 pathway at the transcriptional level, as well as altering inositol-related metabolism and affecting ABA sensitivity

    Gamma-Ray Burst observations by the high-energy charged particle detector on board the CSES-01 satellite between 2019 and 2021

    Full text link
    In this paper we report the detection of five strong Gamma-Ray Bursts (GRBs) by the High-Energy Particle Detector (HEPD-01) mounted on board the China Seismo-Electromagnetic Satellite (CSES-01), operational since 2018 on a Sun-synchronous polar orbit at a ∼\sim 507 km altitude and 97∘^\circ inclination. HEPD-01 was designed to detect high-energy electrons in the energy range 3 - 100 MeV, protons in the range 30 - 300 MeV, and light nuclei in the range 30 - 300 MeV/n. Nonetheless, Monte Carlo simulations have shown HEPD-01 is sensitive to gamma-ray photons in the energy range 300 keV - 50 MeV, even if with a moderate effective area above ∼\sim 5 MeV. A dedicated time correlation analysis between GRBs reported in literature and signals from a set of HEPD-01 trigger configuration masks has confirmed the anticipated detector sensitivity to high-energy photons. A comparison between the simultaneous time profiles of HEPD-01 electron fluxes and photons from GRB190114C, GRB190305A, GRB190928A, GRB200826B and GRB211211A has shown a remarkable similarity, in spite of the different energy ranges. The high-energy response, with peak sensitivity at about 2 MeV, and moderate effective area of the detector in the actual flight configuration explain why these five GRBs, characterised by a fluence above ∼\sim 3 ×\times 10−5^{-5} erg cm−2^{-2} in the energy interval 300 keV - 50 MeV, have been detected.Comment: Accepted for publication in The Astrophysical Journal (ApJ

    Ocular Vestibular Evoked Myogenic Potentials and Intralabyrinthine Intravestibular Schwannomas

    No full text
    Intralabyrinthine intravestibular schwannomas are uncommon benign tumors arising from the saccular, the utricular or the lateral and superior ampullary nerves. Diagnosis relies on audiovestibular examination and Magnetic Resonance Imaging; literature reports a delay of 8 years between the onset of symptoms and diagnosis. The aim of this paper is to present a case of intralabyrinthine intravestibular schwannoma in which we included in the diagnostic protocol the Ocular Vestibular Evoked Myogenic Potential (oVEMP) test, a new neurophysiological diagnostic exam that measures utricular function and contralateral superior vestibular nerve afferent fibers. We report the case of a patient presenting with progressive sensorineural hearing loss, dizziness, tinnitus and fullness in the right ear. Audiovestibular examination and MRI were performed to diagnose a right intralabyrinthine intravestibular schwannoma; oVEMPs were absent in the side contralateral to lesion and contributed to the diagnostic process in our patient. oVEMP can provide detailed information on the functionality of the superior and lateral ampullary nerves and the macula of utricle with a precise identification of the affected area. Based on this findings, we discuss the role of oVEMPs in the diagnosis of intravestibular intralabyrinthine schwannoma

    Solar particle event detected by ALTEA on board the International Space Station

    No full text
    Context. Solar activity poses substantial risk for astronauts of the International Space Station (ISS) both on board and during extravehicular activity. An accurate assessment of the charged radiation flux in space habitats is necessary to determine the risk and the specific type of radiation exposure of ISS crew members, and to develop ways to protect future crews for planetary missions, even in case of high solar activity. Aims. To reduce the present-day uncertainties about the nature and magnitude of the particle fluxes in space habitats during a solar event, it is fundamental to measure those fluxes in situ. Methods. The ALTEA (Anomalous Long Term Effects on Astronauts) experiment on board the ISS is an active detector composed of six silicon telescopes and is able to follow the dynamics of the radiation flux. During its operation in 2012 a number of flux peaks were detected in correspondence with solar events. Results. We present in this work an analysis of the ALTEA data measured during the March 7th, 2012 solar event, produced by NOAA AR11429. Conclusions. During this event, the flux was enhanced tenfold with respect to ‘‘quiet Sun’’ conditions, producing strong dose increases at high geomagnetic latitudes

    Solar particle event detected by ALTEA on board the International Space Station

    No full text
    Context. Solar activity poses substantial risk for astronauts of the International Space Station (ISS) both on board and during extravehicular activity. An accurate assessment of the charged radiation flux in space habitats is necessary to determine the risk and the specific type of radiation exposure of ISS crew members, and to develop ways to protect future crews for planetary missions, even in case of high solar activity. Aims. To reduce the present-day uncertainties about the nature and magnitude of the particle fluxes in space habitats during a solar event, it is fundamental to measure those fluxes in situ. Methods. The ALTEA (Anomalous Long Term Effects on Astronauts) experiment on board the ISS is an active detector composed of six silicon telescopes and is able to follow the dynamics of the radiation flux. During its operation in 2012 a number of flux peaks were detected in correspondence with solar events. Results. We present in this work an analysis of the ALTEA data measured during the March 7th, 2012 solar event, produced by NOAA AR11429. Conclusions. During this event, the flux was enhanced tenfold with respect to ‘‘quiet Sun’’ conditions, producing strong dose increases at high geomagnetic latitudes

    The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station

    No full text
    High-energy charged particles represent a severe radiation risk for astronauts and spacecrafts and could damage ground critical infrastructures related to space services. Different natural sources are the origin of these particles, among them galactic cosmic rays, solar energetic particles and particles trapped in radiation belts. Solar particle events (SPE) consist in the emission of high-energy protons, alpha-particles, electrons and heavier particles from solar flares or shocks driven by solar plasma propagating through the corona and interplanetary space. Ground-level enhancements (GLE) are rare solar events in which particles are accelerated to near relativistic energies and affect space and ground-based infrastructures. During the current solar cycle 24 a single GLE event was recorded on May 17th, 2012 associated with an M5.1-class solar flare. The investigation of such a special class of solar events permits us to measure conditions in space critical to both scientific and operational research. This event, classified as GLE71, was detected on board the International Space Station (ISS) by the active particle detectors of the ALTEA (Anomalous Long Term Effects in Astronauts) experiment. The collected data permit us to study the radiation environment inside the ISS. In this work we present the first results of the analysis of data acquired by ALTEA detectors during GLE71 associated with an M5.1-class solar flare. We estimate the energy loss spectrum of the solar particles and evaluate the contribution to the total exposure of ISS astronauts to solar high-energy charged particles

    New results on protons inside the South Atlantic Anomaly, at energies between 40-250 MeV in the period 2018-2020, from the CSES-01 satellite mission

    Get PDF
    The High-Energy Particle Detector (HEPD) on board the China Seismo-Electromagnetic Satellite (CSES-01) was launched in February 2018, with a foreseen mission lifetime of over 5 years. It is providing crucial new insight in the physical dynamics of the radiation belts in the Earth's magnetosphere, in particular in the South Atlantic Anomaly (SAA). In this work, proton data from HEPD in the 40 MeV-250 MeV energy range, collected inside the SAA during the period between August 2018 and December 2020, are presented and compared with the up-to-date AP9 model by NASA. These are the first results on SAA protons at Low-Earth Orbit during the minimum activity phase between the 24th and the 25th solar cycles below 250 MeV. They enable an extensive testing and validation of current theoretical and empirical models aimed at predictions of temporal changes in this critical region of space. HEPD is advancing the observations collected by the PAMELA space experiment and NASA Van Allen Probe during the last 15 years through the 23rd and 24th solar cycles
    corecore