997 research outputs found

    Multipartite quantum and classical correlations in symmetric n-qubit mixed states

    Get PDF
    We discuss how to calculate genuine multipartite quantum and classical correlations in symmetric, spatially invariant, mixed nn-qubit density matrices. We show that the existence of symmetries greatly reduces the amount of free parameters to be optimized in order to find the optimal measurement that minimizes the conditional entropy in the discord calculation. We apply this approach to the states exhibited dynamically during a thermodynamic protocol to extract maximum work. We also apply the symmetry criterion to a wide class of physically relevant cases of spatially homogeneous noise over multipartite entangled states. Exploiting symmetries we are able to calculate the nonlocal and genuine quantum features of these states and note some interesting properties.Comment: Close to published Versio

    Quantum state transfer in the presence of non homogeneous external potentials

    Get PDF
    Heisenberg-type spin models in the limit of a low number of excitations are useful tools to study basic mechanisms in strongly correlated and magnetic systems. Many of these mechanisms can be experimentally tested using ultracold atoms. Here, we discuss the implementation of a quantum state transfer protocol in a tight-binding chain in the presence of an inhomogeneous external potential. We show that it can be used to extend the parameter range in which high fidelity state transfer can be achieved beyond the well established weak-coupling regime. Among the class of mirror-reflecting potentials that allow for high-fidelity quantum state transfer, the harmonic case is especially relevant because it allows us to formulate a proposal for the experimental implementation of the protocol in the context of optical lattices

    Correlation approach to work extraction from finite quantum systems

    Full text link
    Reversible work extraction from identical quantum systems via collective operations was shown to be possible even without producing entanglement among the sub-parts. Here, we show that implementing such global operations necessarily imply the creation of quantum correlations, as measured by quantum discord. We also reanalyze the conditions under which global transformations outperform local gates as far as maximal work extraction is considered by deriving a necessary and sufficient condition that is based on classical correlations

    Genuine correlations in finite-size spin systems

    Full text link
    Genuine multipartite correlations in finite-size XY chains are studied as a function of the applied external magnetic field. We find that, for low temperatures, multipartite correlations are sensitive to the parity change in the Hamiltonian ground state, given that they exhibit a minimum every time that the ground state becomes degenerate. This implies that they can be used to detect the factorizing point, that is, the value of the external field such that, in the termodynamical limit, the ground state becomes the tensor product of single-spin states.Comment: Submitted to Int. J. Mod. Phys. B, special issue "Classical Vs Quantum correlations in composite systems" edited by L. Amico, S. Bose, V. Korepin and V. Vedra

    Two-spin entanglement induced by electron scattering in nanostructures

    Full text link
    We present a model where two magnetic impurities in a discrete tight-binding ring become entangled because of scattering processes associated to the injection of a conduction electron. We introduce a weak coupling approximation that allows us to solve the problem in a analytical way and compare the theory with the exact numerical results. We obtain the generation of entanglement both in a deterministic way and in a probabilistic one. The first case is intrinsically related to the structure of the two-impurity reduced density matrix, while the second one occurs when a projection on the electron state is performed

    Probing the spectral density of a dissipative qubit via quantum synchronization

    Get PDF
    The interaction of a quantum system, which is not accessible by direct measurement, with an external probe can be exploited to infer specific features of the system itself. We introduce a probing scheme based on the emergence of spontaneous quantum synchronization between an out-of-equilibrium qubit, in contact with an external environment, and a probe qubit. Tuning the frequency of the probe leads to a transition between synchronization in phase and antiphase. The sharp transition between these two regimes is locally accessible by monitoring the probe dynamics alone and allows one to reconstruct the shape of the spectral density of the environment

    Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 XX model

    Get PDF
    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different ability to redundantly acquire classical information about the system, being the "ferromagnetic phase" the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated to back flow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature
    • …
    corecore