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Abstract We discuss how to calculate genuine multipartite quantum and classical
correlations in symmetric, spatially invariant, mixed n-qubit density matrices. We
show that the existence of symmetries greatly reduces the amount of free parameters to
be optimized in order to find the optimal measurement that minimizes the conditional
entropy in the discord calculation. We apply this approach to the states exhibited
dynamically during a thermodynamic protocol to extract maximum work. We also
apply the symmetry criterion to a wide class of physically relevant cases of spatially
homogeneous noise over multipartite entangled states. Exploiting symmetries we are
able to calculate the non-local and genuine quantum features of these states and note
some interesting properties.

Keywords Discord · Non-locality · Multipartite correlations · Symmetric states

1 Introduction

How quantum systems can be correlated is typically discussed within three categories:
non-local, non-separable (entangled), or non-classical (discordant). Their formal
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differences aside, one common aspect of them all is the difficulty in extending any def-
inition to mixed multipartite systems. Quantum discord was originally defined as the
difference between two quantum analogues of the classical mutual information [1,2].
The interest around such a quantumness quantifier is justified considering the fact that
there are examples in mixed-state quantum computation where it appears clear that
entanglement in not the only meaningful indicator [4–6]. Even if the role of discord in
quantum computation has not yet been fully clarified, there are many contexts where
its use has been productive [7–10].

The original definition of discord, being based on the separation between system
and apparatus [1], applies naturally to bipartite systems. As in the case of entangle-
ment [3], the extension to the multipartite scenario is not trivial. A series of postulates
any good measure of multipartite correlations should obey was given by Bennett et
al. [11]. Three main generalizations of quantum discord to the multipartite case have
been proposed: Rulli and Sarandy introduced the so-called global discord (GD) which
is a natural extension of a symmetrized version of the QD and is based on a collec-
tive measurement [12], Modi and co-workers proposed a unified view of correlations
that applies in both the bipartite and the multipartite scenarios based on the use of
the relative entropy to quantify the ‘distance’ between states [13], and in Ref. [14],
relative entropy was also employed to give a measure of genuine total, classical, and
quantum correlations. Genuine correlations were defined as the amount of correla-
tion that cannot be accounted for considering any of the possible subsystems. It was
explicitly described how to implement the general definition to the case of three-qubit
pure states. However, due to consistency problems, it is not clear to what states that
definition can be easily applied.

The calculation of quantum discord is in general a very hard task. Also in the
bipartite scenario, exact analytical results are known only in a few special cases.
The case of two qubits was explored in Refs. [15–17], with some further bounds
given in [18–20], the Gaussian discord was presented in [21,22], while the analysis of
quantum correlations in high-dimensional states was performed by Chitambar in Ref.
[23].

A major obstacle is represented by the fact that a minimization over a complete
set of positive-operator-valued measures (POVMs) must be performed. This problem
is generally overcome observing that, in common cases, orthogonal-projective mea-
surements give a fairly tight upper bound on discord [24]. The problem of quantifying
discord becomes, obviously, evenmore complicated in themultipartite scenario,where
too many parameters need to be taken into account. However, the complexity of the
problem is dramatically reduced in the presence of states that enjoy some symmetry
property. Thus, in this work we make a significant step in the quantitative analysis
of multipartite correlations, taking inspiration from previous studies by focusing on
some classes of physically relevant states.

The first scenario we consider, where symmetric states play a fundamental role,
can be found in quantum thermodynamics. Recent works have started investigating
the possibility of exploiting the degree of quantumness of a system in order to achieve
advantage in thermodynamic processes. More specifically, the role of entanglement
was studied in Refs. [25,26] in connection to the maximal work extraction problem
in finite quantum systems under cyclic transformations [27]. Considering the same
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physical process, in Ref. [28], we analyzed the behavior of multipartite quantum dis-
cord, using both the definition of global discord [12,29] and the measure of genuinely
multipartite correlations [14]. The protocol consists of a series of swap operations
between different eigenstates of a density matrix that is diagonal with respect to the
Hamiltonian basis both at the beginning and at the end of the cycle. As the state
conserves its spatial invariance during the cycle, it is possible to apply symmetry
considerations.

An equally important line of inquiry has been the dynamics of quantum correla-
tions in open systems. In particular, understanding how quantum correlations behave
under adverse effects is interesting from a pragmatic viewpoint both regarding the
utility of such correlations and in understanding the differences and similarities aris-
ing when studying different types of quantum correlations. Only recently has the
study of multipartite non-local [33,34] and non-classical [35,36] correlations in such
adverse situations been studied since the calculation of these quantities is typically
extremely difficult, in fact, we remark that this observation wasmade rigorous recently
in Ref. [37] where the calculation of discord was proven to be NP-complete. We
show for some widely applicable noisy processes that we can again efficiently calcu-
late both the non-local and genuinely quantum correlations for a class of symmetric
states.

In this work, motivated by these physically relevant examples, we address the ques-
tion of quantitatively studying genuine correlations, global discord, and multipartite
non-locality for spatially symmetric n-qubit states, where we achieve analytic expres-
sions, and further note some interesting differences between the figures of merit under
the action of noisy channels. Some complementary analyses can also be found in
Refs. [38,39] where multipartite correlations are quantitatively explored.

2 Measures and indicators of multipartite correlations

2.1 Genuine multipartite correlations

In this section we briefly review the definition of genuine quantum and classical corre-
lations given in Ref. [14]. Given an n-partite density matrix � and its reduced states � j

( j = 1, . . . , n), genuine correlations can be defined starting from the generalization
of mutual information to n parties T (�) as a measure of total correlations:

T (�) =
n∑

j=1

S(� j ) − S(�), (1)

where S(.) is the von Neumann entropy. Genuine correlations represent the amount
of correlations that cannot be accounted for considering any of the possible reduced
subsystems: An n-partite state has genuine n-partite correlations if it is non-product
in every bipartite cut (this definition is in agreement with the general criteria given in
Ref. [11]). According to this criterion, genuine total correlations T (n)(�) coincide with
the distance, measured through the relative entropy, between � and the closest state
with no n-partite correlations, that is, the closest state which is product at least along
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4602 G. L. Giorgi, S. Campbell

a bipartite cut [13]. This definition implies that T (n) coincides with the minimum
bipartite mutual information present in the system. Then, we can obtain quantum
(D(n)) and classical (J (n)) genuine correlations just applying the usual definition of
quantum discord and classical correlations for bipartite systems, where the bipartition
is defined along the optimal cut along which T (n) is calculated.

Trying to extend such a relative entropy-based criterion to any level of separability,
it turns out that a consistent set of definitions can not always be given. In fact, even in
the simple tripartite case, it can happen that the sum of tripartite and bipartite quantum
(or classical) correlations exceeds its total value. This is due to the fact that the different
subparts are in general different to each other, which causes the different combinations
of correlations not to sum as desired. This problem is obviously not present if the state
under investigation is spatially symmetric, which will be the case for the states we
discuss in this work.

2.2 Global discord

The global discord (GD) is a multipartite extension of the original definition of the
bipartite discord when collective measurements are applied [12]. It is defined

Gn(ρ) = min
{�̂p}

⎧
⎨

⎩S
(
ρ||�̂(ρ)

)
−

n∑

j=1

S
(
ρ j ||�̂ j (ρ j )

)
⎫
⎬

⎭ , (2)

with ρ the density matrix for the total state, ρ j = Tri �= j [ρ] the reduced state of qubit

j , �̂ j (ρ j ) = ∑
l �̂

l
jρ j �̂

l
j , and �̂(ρ) = ∑

k �̂kρ�̂k , where �̂k = ⊗n
l=1�̂

kl
l , and k

stands for the string of indices (k1 . . . kn). Here, the symbol �̂ denotes standard von
Neumann projectors, upon which the minimum has to be found, contrarily to what
happens for the standard quantum discord, where POVMs are invoked [12].

Differently to the measure presented in the previous section, the GD is not sensitive
to genuine n-partite correlations, i.e., states exhibit quantum correlations among some
of its subsystems but are nevertheless separable over some bipartition. However, it is
a reliable indicator of quantumness in a given state, and a nonzero GD guarantees that
at least two of the subsystems exhibit quantum correlations.

In general, this quantity is difficult to calculate again due to the required min-
imization in Eq. (2); however, symmetries can help simplify the calculation. An
alternative formulation that reduces the computational effort was given in Ref. [29],
where the multiqubit projections were expressed in terms of local multiqubit rotations,
R̂i (θi , φi ) = cos θi 1̂1 + i sin θi cosϕi σ̂y + i sin θi sin ϕi σ̂x applied to the separable
eigenstates of⊗n

i=1σ̂z . The minimization of Eq. (2) of an arbitrary state is then a mini-
mization over the 2n angles associated with the rotations.When the state is symmetric,
as we shall show, it is possible to greatly reduce the number of parameters to minimize
over.
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2.3 Multipartite non-locality

The final indicator wewill assess is the multipartite non-locality based on the violation
of a Bell-type inequality. There exist a wide variety of such inequalities, each with
its own merits, and we will restrict ourselves to extension of the tripartite Svetlichy
inequality [30] to n-partite systems given by Collins et al. [31], wherein an iterative
means to constructmultipartite Bell inequalities for dichotomic observableswas given.
Taking o j and Oj as the two outcomes of a measurement performed over one of them
and setting m1 = o1 and M1 = O1, the polynomials are given by

mn = 1

2
mn−1(on + On) + 1

2
Mn−1(on − On), (3)

Mn = 1

2
Mn−1(on + On) + 1

2
mn−1(On − on). (4)

We can then define the generalized Svetlichny polynomials

Nn = mn (n even) (5)

Nn = (mn + Mn)/2 (n odd)

The bound imposed on Nn by local hidden variable models is 1, while quantum
mechanically an n-qubit GHZ state achieves themaximum value of

√
2n−1 and

√
2n−2

for an even and odd number of qubits, respectively. These inequalities are particularly
useful as they detect genuine multipartite non-locality similar to the genuine correla-
tions outlined in Sect. 2.1. Additionally, depending on the degree of violation we can
determine whether there exists a k-separable hidden variable model to reproduce the
correlations in a given state. While formally there is no way to ‘quantify’ the non-
locality in a state, an intuitive picture can be obtained by considering a states resilience
to noise before it no longer violates the inequality.

3 Genuine correlations of symmetric states

Given a symmetric n-partite state, genuine quantum (classical) correlations are, unam-
biguously, the quantum (classical) part of theminimumbipartite correlation in the state.
Following the same criterion also m-partite correlations (m < n) can be calculated.
Despite the existence of a clear definition, as calculating discord requires a minimiza-
tion procedure, it is in general hard to find analytical results. However, the presence
of symmetries can greatly simplify the calculation.

Our goal is to calculate any {n − k : k} discord of an n-partite state, that is,
the discord between the first n − k and last k subparts of the state (or any other
spatial combination). As explained in the ‘Introduction,’ quantum discord is obtained
minimizing the conditional entropy over a complete set of POVMs. On the other hand,
limiting the calculation to orthogonal projectors, as largely discussed in the literature,
gives a fairly tight upper bound [24] and is the approach we will utilize throughout
this work.
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4604 G. L. Giorgi, S. Campbell

The elements of a complete set of orthogonal projectors representing the measure-
ment process on k subparts can be generically written as Bi = |ψi 〉〈ψi |, with

|ψi 〉 =
∑

i

αi |i〉, (6)

where |i〉 is any of the states of the k-partite basis. By definition of bipartite discord,

Dn−k:k = S(�{k}) − S(�) +
∑

i

bi S(〈ψi |�|ψi 〉/bi ), (7)

where �{k} is the reduced density matrix over the k subparts of the state, bi =
Tr {〈ψi |�|ψi 〉}, and where the measurement process minimizing the conditional
entropy has been already found. Then, as shown in Ref. [32] for any extremal POVM,
the symmetry of the states is reflected in a symmetry of the optimal measurements,
which can be assumed to be covariant with respect to the same symmetry group.

Let us assume the existence of a symmetry operator acting on the k qubits to be
measured under the action of which the total density matrix � is left unchanged:

� = U †
{k}�U{k}. (8)

If we put Eq. (8) into Eq. (7) we get

Dn−k:k = S(�{k}) − S(�) +
∑

i

bi S(〈ψ̃i |�|ψ̃i 〉/bi ) (9)

where |ψ̃i 〉 = U{k}|ψi 〉. Notice that the coefficients bi are not modified. As a con-
sequence, the comparison between Eq. (7) and Eq. (9) leads us to the conclusion
that the optimal basis {|ψi 〉} is made by eigenstates of U{k}. Indeed, for any i , that
is, term by term, 〈ψ̃i |�|ψ̃i 〉 = 〈ψi |�|ψi 〉. Writing |ψ̃i 〉 = ∑

k cik |ψk〉, we arrive to∑
k,k′ c∗

ikcik′ 〈ψk |�|ψk′ 〉 = 〈ψi |�|ψi 〉, which always admits the solution cik = δikeiφi .
Then, U{k}|ψi 〉 = eiφi |ψi 〉.
4 Multipartite correlations in a thermodynamic process

4.1 Genuine correlations

A clear example of the application of this criterion is given considering the maximal
work extraction protocol studied in Ref. [28]. In particular, we consider the symmetric
n-qubit state

� = pn0 + pn1
2

(|00 . . . 0〉〈00 . . . 0| + |11 . . . 1〉〈11 . . . 1|)

+ pn0 − pn1
2

(|00 . . . 0〉〈11 . . . 1| + |11 . . . 1〉〈00 . . . 0|) +
n−1∑

j=1

p j
0 p

n− j
1 I j ,

(10)
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where I j is the identity operator in the j-excitation subspace, and in general 0 ≤ p0 ≤
1 with p1 = 1− p0. This state can be obtained starting from (p0|0〉〈0| + p1|1〉〈1|)⊗n

by coherently mixing |0〉⊗n to |1〉⊗n to the end of reordering these eigenvalues of the
state at the end of the cycle.

For this density matrix, two symmetry operators can be identified: the translation
operator T (here, for the sake of clarity, with the word translation we mean any spatial
manipulation of the state), which embodies the spatial invariance of the state, and
parity-related operator (the parity P tells us if in the state there is an even or odd
number of 0s). Let us consider the form of the symmetric eigenstates explicitly for
different values of k (starting from k = 2, as we need a multipartite basis for the
measurement).

• k = 2 The symmetries are T and the parityP . The family of common eigenvectors
of these operators is

|ψ1〉 = cos θ |00〉 + sin θ |11〉
|ψ2〉 = − sin θ |00〉 + cos θ |11〉
|ψ3〉 = |01〉 + |10〉√

2

|ψ4〉 = |01〉 − |10〉√
2

(11)

So, the minimization necessary to calculate discord is reduced to finding the opti-
mal value of a single parameter θ (which is found to be π/4). Then, the Bell basis
is optimal.

• k = 3 In this case, any translation operator acting on the system commutes with �,
while the parity does not. Nevertheless, a symmetry can be found by multiplying
P by an operator, acting on the three qubits, such that |0〉 → |0〉 and |1〉 →
eiπ/3|1〉 (let us call this symmetry operator P(3)). Eigenstates of P(3) invariant
under translation are |000〉 and |111〉with eigenvalue+1, |W 〉 = (|001〉+|010〉+
|100〉)/√3 and two orthogonal combinations more |W ′〉 and |W ′′〉 (one of them
could be, for instance, (|001〉+ ei2π/3|010〉+ e−i2π/3|100〉)/√3) with eigenvalue
−eiπ/3, and |W̄ 〉 = (|011〉 + |101〉 + |110〉)/√3 together with two orthogonal
combinations |W̄ ′〉 and |W̄ ′′〉 with eigenvalue e2iπ/3. The optimal basis is given
by

|ψ1〉 = cos θ |000〉 + sin θ |111〉
|ψ2〉 = − sin θ |000〉 + cos θ |111〉
|ψ3〉 = |W 〉
|ψ4〉 = |W ′〉
|ψ5〉 = |W ′′〉
|ψ6〉 = |W̄ 〉
|ψ7〉 = |W̄ ′〉
|ψ8〉 = |W̄ ′′〉 (12)
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4606 G. L. Giorgi, S. Campbell

(a) (b)

Fig. 1 a Genuine quantum correlations as measured by D(n) for the case of three (gray), four (dashed
black), and six (solid black) qubits. The state considered is the one given in Eq. (10). For p0 = 1/2 the
state becomes a product one and any correlation disappears. b As for a calculating the global discord. Both
plots are symmetric under the exchange p0 ↔ p1

Actually, given that when evaluating 〈ψi |�|ψi 〉 phases do not matter, we can safely
use |ψ1〉, |ψ2〉, three times |W 〉, and three times |W̄ 〉. As in the k = 2 case, the
optimal value of θ is found to beπ/4. The optimal basis then consists ofmaximally
entangled states.

• k > 3 The generalization to any k is straightforward. A symmetry operator P(k)

always exists and is the product of the parity P by a second operator such that
|0〉 → |0〉 and |1〉 → eiπ/k |1〉 if k is odd and |1〉 → e2iπ/k |1〉 if k is even. The
optimal set ofmeasurements is represented by |GHZ±〉 = (|0〉⊗k±|1〉⊗k)/

√
k and

by the generalized |W 〉 state (Fourier mode) in any of the j-excitation subspaces
( j = 1, . . . , k − 1) with multiplicity

(k
j

)
.

So, despite the multipartite nature of the state a number of operations of size k
are sufficient to calculate any bipartite discord between many-qubit parts. In order to
get the true n-partite discord, a quantitative comparison among all the possible cuts
is finally required. In Fig. 1 we show the behavior of D(n) as a function of the state
parameter p0 for different values of n. Any of the lines plotted has been obtained
taking the minimum over all the possible {n − k : k} partitions.

4.2 Global discord

For Eq. (10) we can also efficiently calculate analytically the global discord. The first
simplification is noting that the final term in Eq. (2) corresponds to a relative entropy
for each individual qubit, which due to the fully symmetric nature of the state we can
fully determine this term by calculating it for any single qubit and taking n times this.
The most difficult part comes from calculating the relative entropy for the total state
given by the first term in Eq. (2), since for an arbitrary n qubit state the minimization
requires 2n angles. However, since the state is fully symmetric it is clear that only a
single angle is required, as it is the same applied to each qubit. For the state at hand
we find the angle required to minimize Eq. (2) is θ = π

2 . Finally, we find the GD for
Eq. (10)

Gn = pn0 log2 p
n
0 + pn1 log2 p

n
1 − (

pn0 + pn1
)
log2

(
1

2

[
pn0 + pn1

])
, (13)
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In Fig. 1b we show the behavior of Gn as a function of the state parameter p0 for
different values of n.

5 Multipartite correlations in open systems

As a second, physically relevant application, we assess the multipartite measures and
indicators in open systems. In particular, we study the broadly applicable amplitude
and phase damping channels applied to the generalized n-qubit GHZ multipartite
entangled states. The amplitude damping (AD) channel describes the probability of
losing an excitation to the surrounding environment. By modeling the environment,
E , as a qubit interacting with the system qubit, S, the action of the amplitude damping
channel is

|0S0E 〉 → |0S0E 〉 ,

|1S0E 〉 → √
1 − λ |1S0E 〉 + √

λ |0S1E 〉 .

The phase damping (PD) channel acts in a similar manner, the only difference being
this affects only the coherence present in the system and leaves the populations (i.e.,
the energy) unchanged. The phase damping channel acts as

|0S0E 〉 → |0S0E 〉 ,

|1S0E 〉 → √
1 − γ |1S0E 〉 + √

γ |1S1E 〉 .

We apply these channels locally to each qubit of the multipartite states (assuming the
same damping rate for all qubits). By then tracing over the all environment degrees
of freedom, we determine the density matrices for the various n-qubit noisy states.
Starting from the generalized n-qubit GHZ state

|ψGHZ〉 = α1 |01 . . . 0n〉 + α2 |11 . . . 1n〉 , α1 ∈ [0, 1√
2
], α2 =

√
1 − α2

1, (14)

we find the corresponding multipartite noisy states take the form

�AD
GHZ = (α2

1 + α2
2λ

n) |01 . . . 0n〉 〈01 . . . 0n| + α2
2(1 − λ)n |11 . . . 1n〉 〈11 . . . 1n|

+α1α2(1 − λ)
n
2 (|01 . . . 0n〉 〈11 . . . 1n| + |11 . . . 1n〉 〈01 . . . 0n|)

+α2
2

n−1∑

k=1

(1 − λ)kλn−kIk (15)

�PD
GHZ = α2

1 |01 . . . 0n〉 〈01 . . . 0n| + α2
2 |11 . . . 1n〉 〈11 . . . 1n|

+α1α2(1 − γ )
n
2 (|01 . . . 0n〉 〈11 . . . 1n| + |11 . . . 1n〉 〈01 . . . 0n|) (16)
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4608 G. L. Giorgi, S. Campbell

5.1 Genuine correlations

The same derivation described in Sect. 3 can be applied to the case of a multipartite
GHZ state under amplitude damping. In fact, �AD

nGHZ is both T - and P(k)-symmetric
and all the considerations made before are valid. The optimal value of θ , however, will
not be generally equal to π/4 any more.

As for the case of �PD
GHZ, the solution is even simpler, given that the state is rank

2, and, irrespective of the cut considered, it is always possible to purify it adding an
external qubit as ancilla [24,40]. Then, the Koashi–Winter formula can be used to find
an analytical expression for the multipartite discord [41]. For instance, in the tripartite
case, we have

D(3)(�i jk) = min
{
S(� jk) − S(�) + E(�i,a), S(�i ) − S(�) + E(� jk,a)

}
(17)

where a denotes the ancilla and E(.) is the entanglement of formation, which can be
calculated analytically, since in the jk part only two levels are populated.

5.2 Non-locality

Determining the non-locality is again a difficult task because in order to search for
a violation of the inequality we are required to maximize over the two chosen mea-
surement settings. This is a state-dependent issue, meaning that for a given state we
need to be careful precisely what measurement settings we choose, and regardless, as
with the calculation of discord, there is an optimization required. Each of the different
elements entering the Svetlichny inequalities Eq. (5) corresponds to an n-partite cor-
relation function determined by applying local rotations to each qubit. For the damped
GHZ state Eq. (15) we apply the local rotation R(θ

qi
i ) = cos(θqii )σ̂x + sin(θqii )σ̂y to

each of the n qubits with qi = 1 or 2 being the two possible measurement settings.
We find the correlation function takes a simple form

C(θ
q1
1 . . . θ

qn
n ) = Tr

[
R(θ

q1
1 . . . θ

qn
n )�AD

GHZ

]
(18)

= 2(1 − λ)
n
2 α1α2 cos

(
θ
q1
1 + · · · + θ

qn
n

)
,

with qi = 1 or 2. All that remains is to iteratively determine the corresponding
Svetlichny polynomial for a given n to study the non-locality. For clarity, let us explic-
itly determine this for n = 2. We have then from Eq. (5)

N2 = m2 = 1

2
o1(o2 + O2) + 1

2
O1(o2 − O2)

= 1

2
(o1o2 + o1O2 + O1o2 − O1O2) ,
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(a) (b)

Fig. 2 a Non-locality for an initially ideal GHZ state. Curves for n = 2, 3 (solid), 4, 5 (dashed), and 6, 7
(dotted) qubits from bottom to top. Lowest horizontal line atN = 1 is the local hidden variable bound, and
violation of this implies our state is in some way non-local. The other dashed horizontal lines are the bounds
for 1 : n− 1 separability for 4 or 5 and 6 or 7 qubits, respectively. b As for a starting from a weighted GHZ

state with α1 =
√
2+√

3
2

with each term inside the brackets corresponding to a correlation function. Using
Eq. (18) with n = 2 we have

N2 = 1

2

(
C(θ11 , θ12 ) + C(θ11 , θ22 ) + C(θ21 , θ12 ) − C(θ21 , θ22 )

)

= (1 − λ)α1α2

(
cos

(
θ11 + θ12

)
+ cos

(
θ11 + θ22

)
+ cos

(
θ21 + θ12

)
− cos

(
θ21 + θ22

))

which is the well-known CHSH inequality for a 2 qubit generalized Bell state. Larger
n then follows iteratively applying Eq. (5) in the same fashion, and we find there are
2n distinct correlation functions appearing in the inequality. It is interesting to notice
that if we calculate the same quantities for the PD affected GHZ state, Eq. (16), we
find precisely the same result. This means that the non-locality is not sensitive to the
type of noise the state is undergoing. In Fig. 2 we show the non-locality for a n-qubit
GHZ state undergoing either AD or PD. In panel (a) α1 = 1√

2
, i.e., we start from a

perfect GHZ state. A few interesting features to note, the larger the system the more
noise it can withstand before it no longer violates the classical bound of 1 (lowest solid
horizontal line). The dashed horizontal lines in the plots at 2 and 4 correspond to the
bounds for 1 : (n − 1) separability for 4 or 5 and 6 or 7 qubits, respectively. Values
below these lines for a general state mean we would not be certain the violation of
Eq. (5) was due to full n-partite or n−1-partite correlations, however, given the initial
form of the state we know in this special instance that our violation arises due to full

n-partite correlations. In panel (b) we take α1 =
√

2+√
3

2 , and this state is initially
much less correlated. A qualitatively similar behavior holds; however, we never see
large violations of the inequalities, and for very small systems n = 2, 3, there is no
violation at all.

6 Conclusions

Even if calculating correlations in multipartite states is a hard and generally unsolved
problem, the existence of symmetries greatly simplifies the task. In this work we have
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addressed the quantitative analysis of quantum correlations in some broadly applicable
and physically relevant classes of states. Inspired bymaximal work extraction protocol
from a cyclic transformation (ergotropy), we have shown how to calculate genuine
and global discord under eigenstate swap. Using the same symmetry considerations,
we have also studied the behavior of multipartite non-locality, together with discord,
in the presence of local noise. Beyond the quantification of the correlations in this
instance, we also noted a stark difference between the non-locality and discord; while
the discord was sensitive to the type of lossy channel applied, the non-locality was
unable to discriminate which noisy process the state was undergoing. It remains an
open question how the analysis extends to higher-dimensional systems, where the
calculation of such figures of merit becomes even more involved.
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