32 research outputs found

    Recycling fine particles from construction and demolition wastes: characterization and effects on concrete perfromances

    Full text link
    Recycling construction and demolition wastes induce the production of coarse aggregates, quite easily valorized in road foundations and concretes but also fine and very fine particles which are characterized by high water absorption level. The fine particles are very often rejected as they are containing polluting materials or because of their fineness and shape. This paper tends to show different ways of using Recycled Fine Aggregates (RFA).Integrative solutions for the valorization of CDW for transborder circular economy - Design and manufacture of customized 3D printed urban furniture using recycled sand - Secondary Raw Materials for Concrete Precast Products (introducing new products, applying the circular economy

    Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis

    Get PDF
    Blood coagulation starts immediately after damage to the vascular endothelium. This system is essential for minimizing blood loss from an injured blood vessel but also contributes to vascular thrombosis. Although it has long been thought that the intrinsic coagulation pathway is not important for clotting in vivo, recent data obtained with genetically altered mice indicate that contact phase proteins seem to be essential for thrombus formation. We show that recombinant Ixodes ricinus contact phase inhibitor (Ir-CPI), a Kunitz-type protein expressed by the salivary glands of the tick Ixodes ricinus, specifically interacts with activated human contact phase factors (FXIIa, FXIa, and kallikrein) and prolongs the activated partial thromboplastin time (aPTT) in vitro. The effects of Ir-CPI were also examined in vivo using both venous and arterial thrombosis models. Intravenous administration of Ir-CPI in rats and mice caused a dose-dependent reduction in venous thrombus formation and revealed a defect in the formation of arterial occlusive thrombi. Moreover, mice injected with Ir-CPI are protected against collagen- and epinephrine-induced thromboembolism. Remarkably, the effective antithrombotic dose of Ir-CPI did not promote bleeding or impair blood coagulation parameters. To conclude, our results show that a contact phase inhibitor is an effective and safe antithrombotic agent in vivo

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    INCREASING PROPERTIES OF CONCRETE WITH RECYCLED CONSTRUCTION AND DEMOLITION WASTES

    Full text link
    peer reviewedConstruction waste management is a quite important economic and environmental deal for our societies. More than 2 million tons demolition and construction wastes are annually produced only in Wallonia, Southern Region of Belgium; recycling has clearly to be promoted. Concrete block wastes were crushed in the laboratory by a jaw crusher and the different fractions of laboratory produced RCA were characterized by measuring the hardened cement paste content, the density, the porosity and the water absorption. Results clearly show that, the recycled sands possessed significantly higher cement paste content and higher water absorption than coarse RCA. Then, concrete blocks with different substitutions (0%, 30%, 100%) of natural aggregate by the same volume fraction of RCA were manufactured. The fresh properties (slump, density, air content), and mechanical properties (compressive strength) were studied. The compressive strength of concrete decreased as the substitution of RCA increased. Results show that the compressive strength of concrete made with 100% RCA could reach 8 MPa after 28 days. Therefore, the use of RCA obtained from old block wastes in the production of new blocks can be envisaged depending on their class of exposure and the grade requirement. Moreover, the influence of the fine recycled concrete aggregates (FRCA) on the mechanical and durability properties of concrete was studied. The industrial FRCA produced from recycling center was used into concrete. The concretes with different substitutions (0%, 30%, 100%) of natural sand by the FRCA were manufactured. Mechanical properties (compressive strength) and durability properties (capillary absorption, carbonation depth, and freeze/thaw resistance) were investigated. The results show that the compressive strength of concrete decreased as the substitution of FRCA increased. Durability of concrete could be strongly influenced by the high porosity and water absorption of fine recycled concrete aggregatesSolutions intégrées de valorisation des flux « matériaux » issus de la démolition. Approche transfrontalière vers une économie circulair

    Utilisation du béton recyclé dans la formulation des bétons auto-compactants

    Full text link
    Notre travail porte sur l'étude du comportement des bétons auto-compactants ou auto-plaçants réalisés à base de sable recyclé et de sable recyclé broyé. La première étape consiste en une caractérisation physico-chimique et minéralogique (masse volumique, absorption d’eau, teneur en sulfates, composition chimique...) d’un sable de béton recyclé. Dans un deuxième temps, une étude des propriétés rhéologiques et mécaniques est réalisée sur des mortiers afin de réduire la quantité de matériaux naturels utilisés. La composition du mortier de base est dérivée d’une formulation type de béton auto-compactant préalablement vérifié sur la base de différents critères classiques (étalement au cône, t500, teneur en air,…). Notre étude s’intéresse d’une part aux impacts de la substitution du filler calcaire par du sable recyclé broyé (série 1) et d’autre part aux impacts de la substitution du sable naturel par du sable recyclé (série 2)
    corecore