12 research outputs found

    MicroRNA expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli in vitro

    Get PDF
    Background Coliform mastitis is a symptom of postpartum dysgalactia syndrome (PDS), a multifactorial infectious disease of sows. Our previous study showed gene expression profile change after bacterial challenge of porcine mammary epithelial cells (PMECs). These mRNA expression changes may be regulated through microRNAs (miRNAs) which play critical roles in biological processes. Therefore, miRNA expression profile was investigated in PMECs. Results PMECs were isolated from three lactating sows and challenged with heat-inactivated potential mastitis-causing pathogen Escherichia coli (E. coli) for 3 h and 24 h, in vitro. At 3 h post-challenge with E. coli, target gene prediction identified a critical role of miRNAs in regulation of host immune responses and homeostasis of PMECs mediated by affecting pathways including cytokine binding (miR-202, miR-3277, miR-4903); IL-10/PPAR signaling (miR-3277, miR-4317, miR-548); and NF-ĸB/TNFR2 signaling (miR-202, miR-2262, miR-885-3p). Target genes of miRNAs in PMECs at 24 h were significantly enriched in pathways associated with interferon signaling (miR-210, miR-23a, miR-1736) and protein ubiquitination (miR-125, miR-128, miR-1280). Conclusions This study provides first large-scale miRNA expression profiles and their predicted target genes in PMECs after contact with a potential mastitis-causing E. coli strain. Both, highly conserved miRNAs known from other species as well as novel miRNAs were identified in PMECs, representing candidate predictive biomarkers for PDS. Time-dependent pathogen clearance suggests an important role of PMECs in inflammatory response of the first cellular barrier of the porcine mammary gland

    Assessing the presence of shared genetic architecture between Alzheimer's disease and major depressive disorder using genome-wide association data

    Get PDF
    We are grateful to the families and individuals who took part in the GS:SFHS and UKB studies, and to all those involved in participant recruitment, data collection, sample processing and QC, including academic researchers, clinical staff, laboratory technicians, clerical workers, IT staff, statisticians and research managers. This work is supported by the Wellcome Trust through a Strategic Award, reference 104036/Z/ 14/Z. We acknowledge with gratitude the financial support received from the Dr Mortimer and Theresa Sackler Foundation. This research has been conducted using the GS:SFHS and UK Biobank (project #4844) resources. GS:SFHS received core funding from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. UKB was established using funding from the Wellcome Trust, Medical Research Council, the Scottish Government Department of Health, and the Northwest Regional Development Agency. DJP, IJD, TCR and AMM are members of the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). TCR is supported by Alzheimer's Scotland, through the Marjorie MacBeath bequest. Funding from the Biotechnology and Biological Sciences Research Council and Medical Research Council is gratefully acknowledged. We are grateful for the use of summary data from the International Genomics of Alzheimer's Project and the Major Depressive Disorder working group of the Psychiatric Genomics Consortium.Peer reviewedPublisher PD

    Neural and Synaptic Defects in slytherin, a Zebrafish Model for Human Congenital Disorders of Glycosylation

    Get PDF
    Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development

    At clinically relevant concentrations the anaesthetic/amnesic thiopental but not the anticonvulsant phenobarbital interferes with hippocampal sharp wave-ripple complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many sedative agents, including anesthetics, produce explicit memory impairment by largely unknown mechanisms. Sharp-wave ripple (SPW-R) complexes are network activity thought to represent the neuronal substrate for information transfer from the hippocampal to neocortical circuits, contributing to the explicit memory consolidation. In this study we examined and compared the actions of two barbiturates with distinct amnesic actions, the general anesthetic thiopental and the anticonvulsant phenobarbital, on in vitro SPW-R activity.</p> <p>Results</p> <p>Using an in vitro model of SPW-R activity we found that thiopental (50–200 μM) significantly and concentration-dependently reduced the incidence of SPW-R events (it increased the inter-event period by 70–430 %). At the concentration of 25 μM, which clinically produces mild sedation and explicit memory impairment, thiopental significantly reduced the quantity of ripple oscillation (it reduced the number of ripples and the duration of ripple episodes by 20 ± 5%, n = 12, <it>P </it>< 0.01), and suppressed the rhythmicity of SPWs by 43 ± 15% (n = 6, <it>P </it>< 0.05). The drug disrupted the synchrony of SPWs within the CA1 region at 50 μM (by 19 ± 12%; n = 5, <it>P </it>< 0.05). Similar effects of thiopental were observed at higher concentrations. Thiopental did not affect the frequency of ripple oscillation at any of the concentrations tested (10–200 μM). Furthermore, the drug significantly prolonged single SPWs at concentrations ≥50 μM (it increased the half-width and the duration of SPWs by 35–90 %). Thiopental did not affect evoked excitatory synaptic potentials and its results on SPW-R complexes were also observed under blockade of NMDA receptors. Phenobarbital significantly accelerated SPWs at 50 and 100 μM whereas it reduced their rate at 200 and 400 μM. Furthermore, it significantly prolonged SPWs, reduced their synchrony and reduced the quantity of ripples only at the clinically very high concentration of 400 μM, reported to affect memory.</p> <p>Conclusion</p> <p>We hypothesize that thiopental, by interfering with SPW-R activity, through enhancement of the GABA<sub>A </sub>receptor-mediated transmission, affects memory processes which involve hippocampal circuit activation. The quantity but not the frequency of ripple oscillation was affected by the drug.</p

    A new multilocus sequence typing scheme for the genotypic characterization of Streptococcus canis isolated from human and animal sources.

    No full text
    Our aim was to develop a new multilocus sequence typing (MLST) scheme for Streptococcus canis. We also wanted to compare isolates recovered from different hosts, mainly house pets and humans, in order to define the clonal structure of the S. canis population and explore the zoonotic potential of distinct S. canis genetic lineages. Eighty-five S. canis isolates recovered from infections in animals (n = 78, recovered from 2000 to 2010 in three European countries, mainly from house pets) and humans (n = 7, recovered from 2006 to 2010 in Portugal) were studied. Isolates were identified by API 20 Strep, 23S rRNA gene targeted PCR and 16S rRNA gene sequencing, and characterized by MLST, pulsed-field gel electrophoresis (PFGE) and emm typing. All isolates were successfully typed with the proposed MLST scheme, indicating its applicability to S. canis from distinct sources. The MLST analysis showed a polyclonal structure of the S. canis population, where the same genetic lineages are found infecting house pets and humans and are disseminated in distinct geographic locations. PFGE confirmed the MLST findings, as it identified the same prevailing lineages and further strengthened the similarity between animal and human isolates. Phylogenetic analysis conducted with the 16S rRNA and MLST loci sequence data indicated that S. canis was a divergent taxon of the sister species Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis, and found evidence of acquisition of genetic material by S. canis from the latter species. The presence of emm-like genes was restricted to a few isolates and correlated with MLST defined genetic lineages. Our data shows that S. canis isolated from house pets and humans are a single population and demonstrates that isolates belonging to the main genetic lineages identified are able to infect the human host, providing strong evidence for the zoonotic nature of S. canis infection in humans. A MLST database for S. canis was established at http://pubmlst.org/scanis/ (hosted by the Department of Zoology, University of Oxford, United Kingdom), constituting a valuable tool for future studies on the molecular epidemiology of this pathogen

    Are commitment profiles stable and predictable? A latent transition analysis

    No full text
    Recent efforts have been made to identify and compare employees with profiles reflecting different combinations of affective (AC), normative (NC), and continuance (CC) organizational commitment. To date, the optimal profiles in terms of employee behavior and well-being have been found to be those in which AC, NC, and CC are all strong, or those where AC, or AC and NC, dominate. The poorest outcomes are found for profiles where AC, NC, and CC are all weak, or CC dominates. The primary goal of the current study was to use latent profile analysis and latent transition analysis to identify profile groups and examine changes in profile membership over an 8-month period in an organization undergoing a strategic change. We also tested hypotheses concerning the relation between perceived trustworthiness of management and employees’ commitment profile within and across time. We found that commitment profiles have substantial temporal stability and that trustworthiness positively predicts memberships in more desirable commitment profiles. There was also some, albeit weak, evidence that changes in perceived trustworthiness were accompanied by corresponding shifts in the commitment profile
    corecore