135 research outputs found

    Maximum Fisher information in mixed state quantum systems

    Full text link
    We deal with the maximization of classical Fisher information in a quantum system depending on an unknown parameter. This problem has been raised by physicists, who defined [Helstrom (1967) Phys. Lett. A 25 101-102] a quantum counterpart of classical Fisher information, which has been found to constitute an upper bound for classical information itself [Braunstein and Caves (1994) Phys. Rev. Lett. 72 3439-3443]. It has then become of relevant interest among statisticians, who investigated the relations between classical and quantum information and derived a condition for equality in the particular case of two-dimensional pure state systems [Barndorff-Nielsen and Gill (2000) J. Phys. A 33 4481-4490]. In this paper we show that this condition holds even in the more general setting of two-dimensional mixed state systems. We also derive the expression of the maximum Fisher information achievable and its relation with that attainable in pure states.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000043

    On the Spectral Properties of Matrices Associated with Trend Filters

    Get PDF
    This paper is concerned with the spectral properties of matrices associated with linear filters for the estimation of the underlying trend of a time series. The interest lies in the fact that the eigenvectors can be interpreted as the latent components of any time series that the filter smooths through the corresponding eigenvalues. A difficulty arises because matrices associated with trend filters are finite approximations of Toeplitz operators and therefore very little is known about their eigenstructure, which also depends on the boundary conditions or, equivalently, on the filters for trend estimation at the end of the sample. Assuming reflecting boundary conditions, we derive a time series decomposition in terms of periodic latent components and corresponding smoothing eigenvalues. This decomposition depends on the local polynomial regression estimator chosen for the interior. Otherwise, the eigenvalue distribution is derived with an approximation measured by the size of the perturbation that different boundary conditions apport to the eigenvalues of matrices belonging to algebras with known spectral properties, such as the Circulant or the Cosine. The analytical form of the eigenvectors is then derived with an approximation that involves the extremes only. A further topic investigated in the paper concerns a strategy for a filter design in the time domain. Based on cut-off eigenvalues, new estimators are derived, that are less variable and almost equally biased as the original estimator, based on all the eigenvalues. Empirical examples illustrate the effectiveness of the method

    Hyper-spherical and Elliptical Stochastic Cycles

    Get PDF
    A univariate first order stochastic cycle can be represented as an element of a bivariate first order vector autoregressive process, or VAR(1), where the transition matrix is associated with a Givens rotation. From the geometrical viewpoint, the kernel of the cyclical dynamics is described by a clockwise rotation along a circle in the plane. The reduced form of the cycle is either ARMA(2,1), with complex roots, or AR(1), when the rotation angle equals 2k\pi or (2k + 1)\pi; k = 0; 1;... This paper generalizes this representation in two directions. According to the first, the cyclical dynamics originate from the motion of a point along an ellipse. The reduced form is also ARMA(2,1), but the model can account for certain types of asymmetries. The second deals with the multivariate case: the cyclical dynamics result from the projection along one of the coordinate axis of a point moving in Rn along an hyper-sphere. This is described by a VAR(1) process whose transition matrix is obtained by a sequence of n-dimensional Givens rotations. The reduced form of an element of the system is shown to be ARMA(n, n - 1). The properties of the resulting models are analyzed in the frequency domain, and we show that this generalization can account for a multimodal spectral density. The illustrations show that the proposed generalizations can be fitted successfully to some well known case studies of the econometric and time series literature. For instance, the elliptical model provides a parsimonious but effective representation of the mink-muskrat interaction. The hyperspherical model provides an interesting re-interpretation of the cycle in US Gross Domestic Product quarterly growth and the cycle in the Fortaleza rainfall series.State space models; Predator-Prey Interaction; Givens Rotations.

    On the Equivalence of the Weighted Least Squares and the Generalised Least Squares Estimators, with Applications to Kernel Smoothing

    Get PDF
    The paper establishes the conditions under which the generalised least squares estimator of the regression parameters is equivalent to the weighted least squares estimator. The equivalence conditions have interesting applications in local polynomial regression and kernel smoothing. Specifically, they enable to derive the optimal kernel associated with a particular covariance structure of the measurement error, where optimality has to be intended in the Gauss-Markov sense. For local polynomial regression it is shown that there is a class of covariance structures, associated with non-invertible moving average processes of given orders which yield the the Epanechnikov and the Henderson kernels as the optimal kernels.Local polynomial regression; Epanechnikov Kernel; Non-invertible Moving average processes

    Low-Pass Filter Design using Locally Weighted Polynomial Regression and Discrete Prolate Spheroidal Sequences

    Get PDF
    The paper concerns the design of nonparametric low-pass filters that have the property of reproducing a polynomial of a given degree. Two approaches are considered. The first is locally weighted polynomial regression (LWPR), which leads to linear filters depending on three parameters: the bandwidth, the order of the fitting polynomial, and the kernel. We find a remarkable linear (hyperbolic) relationship between the cutoff period (frequency) and the bandwidth, conditional on the choices of the order and the kernel, upon which we build the design of a low-pass filter. The second hinges on a generalization of the maximum concentration approach, leading to filters related to discrete prolate spheroidal sequences (DPSS). In particular, we propose a new class of lowpass filters that maximize the concentration over a specified frequency range, subject to polynomial reproducing constraints. The design of generalized DPSS filters depends on three parameters: the bandwidth, the polynomial order, and the concentration frequency. We discuss the properties of the corresponding filters in relation to the LWPR filters, and illustrate their use for the design of low-pass filters by investigating how the three parameters are related to the cutoff frequency.Trend filters; Kernels; Concentration; Filter Design.

    Schedule

    Get PDF

    The Variance Profile

    Get PDF
    The variance profile is defined as the power mean of the spectral density function of a stationary stochastic process. It is a continuous and non-decreasing function of the power parameter, p, which returns the minimum of the spectrum (p → −∞), the interpolation error variance (harmonic mean, p = −1), the prediction error variance (geometric mean, p = 0), the unconditional variance (arithmetic mean, p = 1) and the maximum of the spectrum (p → ∞). The variance profile provides a useful characterisation of a stochastic processes; we focus in particular on the class of fractionally integrated processes. Moreover, it enables a direct and immediate derivation of the Szego-Kolmogorov formula and the interpolation error variance formula. The paper proposes a non-parametric estimator of the variance profile based on the power mean of the smoothed sample spectrum, and proves its consistency and its asymptotic normality. From the empirical standpoint, we propose and illustrate the use of the variance profile for estimating the long memory parameter in climatological and financial time series and for assessing structural change.Predictability; Interpolation; Non-parametric spectral estimation; Long memory.

    Maximum likelihood estimation of time series models: the Kalman filter and beyond

    Get PDF
    The purpose of this chapter is to provide a comprehensive treatment of likelihood inference for state space models. These are a class of time series models relating an observable time series to quantities called states, which are characterized by a simple temporal dependence structure, typically a first order Markov process. The states have sometimes substantial interpretation. Key estimation problems in economics concern latent variables, such as the output gap, potential output, the non-accelerating-inflation rate of unemployment, or NAIRU, core inflation, and so forth. Time-varying volatility, which is quintessential to finance, is an important feature also in macroeconomics. In the multivariate framework relevant features can be common to different series, meaning that the driving forces of a particular feature and/or the transmission mechanism are the same. The objective of this chapter is reviewing this algorithm and discussing maximum likelihood inference, starting from the linear Gaussian case and discussing the extensions to a nonlinear and non Gaussian framework

    Maximum likelihood estimation of time series models: the Kalman filter and beyond

    Get PDF
    The purpose of this chapter is to provide a comprehensive treatment of likelihood inference for state space models. These are a class of time series models relating an observable time series to quantities called states, which are characterized by a simple temporal dependence structure, typically a first order Markov process. The states have sometimes substantial interpretation. Key estimation problems in economics concern latent variables, such as the output gap, potential output, the non-accelerating-inflation rate of unemployment, or NAIRU, core inflation, and so forth. Time-varying volatility, which is quintessential to finance, is an important feature also in macroeconomics. In the multivariate framework relevant features can be common to different series, meaning that the driving forces of a particular feature and/or the transmission mechanism are the same. The objective of this chapter is reviewing this algorithm and discussing maximum likelihood inference, starting from the linear Gaussian case and discussing the extensions to a nonlinear and non Gaussian framework
    • …
    corecore