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1 Introduction

The purpose of this chapter is to provide a comprehensive treatment of likelihood inference for state
space models. These are a class of time series models relating an observable time series to quantities
called states, which are characterized by a simple temporal dependence structure, typically a first order
Markov process.

The states have sometimes substantial interpretation. Key estimation problems in economics concern
latent variables, such as the output gap, potential output, the non-accelerating-inflation rate of unemploy-
ment, or NAIRU, core inflation, and so forth. Time-varying volatility, which is quintessential to finance,
is an important feature also in macroeconomics. In the multivariate framework relevant features can be
common to different series, meaning that the driving forces of a particular feature and/or the transmission
mechanism are the same.

The main macroeconomic applications of state space models have dealt with the following topics.

• The extraction of signals such as trends and cycles in macroeconomic time series: see Watson
(1986), Clark (1987), Harvey and Jaeger (1993), Hodrick and Prescott (1997), Morley, Nelson and
Zivot (2003), Proietti (2006), Luati and Proietti (2011).

• Dynamic factor models, for the extraction of a single index of coincident indicators, see Stock and
Watson (1989), Frale et al. (2011), and for large dimensional systems (Jungbacker, Koopman and
van der Wel, 2011).

• Stochastic volatility models: see Shephard (2005) and Stock and Watson (2007) for applications
to US inflation.

• Time varying autoregressions, with stochastic volatility: Primiceri (2005), Cogley, Primiceri and
Sargent (2010).

• Structural change in macroeconomics: see Kim and Nelson (1999), Giordani, Kohn and van Dijk
(2007).

∗Chapter written for the Handbook of Research Methods and Applications on Empirical Macroeconomics, edited by Nigar
Hashimzade and Michael Thornton, forthcoming in 2012 (Edward Elgar Publishing).



• The class of dynamic stochastic general equilibrium (DSGE) models: Sargent (1989), Fernandez-
Villaverde and Rubio-Ramirez (2005), Smets and Wouters (2003), Fernandez-Villaverde (2010).

Leading macroeconomics books, such as Ljungqvist and Sargent (2004) and Canova (2007), provide a
comprehensive treatment of state space models and related methods. The above list of references and
topics is all but exhaustive and the literature has been growing at a fast rate.

State space methods are tools for inference in state space models, since they allow one to estimate
any unknown parameters along with the states, to assess the uncertainty of the estimates, to perform
diagnostic checking, to forecast future states and observations, and so forth.

The Kalman filter (Kalman, 1960; Kalman and Bucy, 1961) is a fundamental algorithm for the statis-
tical treatment of a state space model. Under the Gaussian assumption it produces the minimum mean
square estimator of the state vector along with its mean square error matrix, conditional on past informa-
tion; this is used to build the one-step-ahead predictor of yt and its mean square error matrix. Due to the
independence of the one-step-ahead prediction errors, the likelihood can be evaluated via the prediction
error decomposition.

The objective of this chapter is reviewing this algorithm and discussing maximum likelihood infer-
ence, starting from the linear Gaussian case and discussing the extensions to a nonlinear and non Gaus-
sian framework. Due to space constraints we shall provide a self-contained treatment of the standard
case and an overview of the possible modes of inference in the nonlinear and non Gaussian case. For
more details we refer the reader to Jazwinski (1970), Anderson and Moore (1979), Hannan and Deistler
(1988), Harvey (1989), West and Harrison (1997), Kitagawa and Gersch (1996) Kailath, Sayed and
Hassibi (2000), Durbin and Koopman (2001), Harvey and Proietti (2005), Cappé, Moulines and Ryden
(2007) and Kitagawa (2009).

The chapter is structured as follows. Section 2 introduces state space models and provides the state
space representation of some commonly applied linear processes, such as univariate and multivariate
autoregressive moving average processes (ARMA) and dynamic factor models. Section 3 is concerned
with the basic tool for inference in state space models, that is the Kalman filter. Maximum likelihood
estimation is the topic of section 4, and discusses the profile and marginal likelihood, when nonstationary
and regression effects are present; section 5 deals with estimation by the Expectation Maximization (EM)
algorithm. Section 6 considers inference in nonlinear and non-Gaussian models along with stochastic
simulation methods and new directions of research. Section 7 concludes the chapter.

2 State space models

We begin our treatment with the linear Gaussian state space model. Let yt denote an N × 1 vector
time series related to an m × 1 vector of unobservable components, the states, αt, by the so-called
measurement equation,

yt = Ztαt +Gtεt, t = 1, . . . , n, (1)

where Zt is an N ×m matrix, Gt is N × g and εt ∼ NID(0, σ2Ig).
The evolution of the states is governed by the transition equation:

αt+1 = Ttαt +Htεt, t = 1, 2, . . . , n, (2)

where the transition matrix Tt is m×m and Ht is m× g.
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The specification of the state space model is completed by the initial conditions concerning the distri-
bution of α1. In the sequel we shall assume that this distribution is independent of εt, ∀t ≥ 1. When the
system is time-invariant and αt is stationary (the eigenvalues of the transition matrix, T, are inside the
unit circle), the initial conditions are provided by the unconditional mean and covariance matrix of the
state vector, E(α1) = 0 and Var(α1) = σ2P1|0, satisfying the matrix equation P1|0 = TP1|0T

′+HH′.
Initialization of the system turns out to be a relevant issue when nonstationary components are present.

Often the models are specified in a way that the measurement and transition equation disturbances
are uncorrelated, i.e. HtG

′
t = 0, ∀t.

The system matrices, Zt,Gt,Tt, and Ht, are non-stochastic, i.e. they are allowed to vary over time
in a deterministic fashion, and are functionally related to a set of hyperparameters, θ ∈ Θ ⊆ Rk, which
are usually unknown. If the system matrices are constant, i.e. Zt = Z,Gt = G,Tt = T and Ht = H,
the state space model is time invariant.

2.1 State Space representation of ARMA models

Let yt be a scalar time series with ARMA(p, q) representation:

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + ξt + θ1ξt−1 + · · ·+ θqξt−q, ξt ∼ NID(0, σ2),

or ϕ(L)yt = θ(L)ξt, where L is the lag operator, and ϕ(L) = 1−ϕ1L− · · · −ϕpL
p, θ(L) = 1+ θ1L+

· · ·+ θqL
q,

The state space representation proposed by Pearlman (1980), see Burridge and Wallis (1988) and de
Jong and Penzer (2004), is based on m = max(p, q) state elements and it is such that εt = ξt. The time
invariant system matrices are

Z = [1, 0′m−1],G = 1,T =



ϕ1 1 0 · · · 0

ϕ2 0 1
. . . 0

...
...

. . . . . . 0
... · · · · · · 0 1
ϕm 0 · · · · · · 0


,H =


θ1 + ϕ1
θ2 + ϕ2

...

...
θm + ϕm

 .

If yt is stationary, the eigenvalues of T are inside the unit circle (and viceversa). State space representa-
tions are not unique. The representation adopted by Harvey (1989) is based onm = max(p, q+1) states
and has Z,T as above, but G = 0 and H′ = [1, θ1, . . . , θm]. The canonical observable representation in
Brockwell and Davis (1991) has minimal state dimension, m = max(p, q), and

Z = [1, 0′m−1],G = 1,T =



0 1 0 · · · 0

0 0 1
. . . 0

...
...

. . . . . . 0
... · · · · · · 0 1
ϕm ϕm−1 · · · · · · ϕ1


,H =


ψ1

ψ2
...
...
ψm

 ,

where ψj are the coefficients of the Wold polynomial ψ(L) = θ(L)/ϕ(L). The virtues of this representa-
tion is that αt = [ỹt|t−1, ỹt+1|t−1, . . . , ỹt+m−1|t−1]

′ where ỹt+j|t−1 = E(yt+j |Yt−1), Yt = {yt, yt−1, . . .}.
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In fact, the transition equation is based on the forecast updating recursions:

ỹt+j|t = ỹt+j−1|t−1 + ψjξt, j = 1, . . . ,m− 1, ỹt+m|t =
m∑
k=1

ϕkỹt+k|t−1 + ψmξt.

2.2 AR and MA approximation of Fractional Noise

The fractional noise process (1 − L)dyt = ξt, ξt ∼ NID(0, σ2), is stationary if d < 0.5. Unfortunately
such a process is not finite order Markovian and does not admit a state space representation with finite
m. Chan and Palma (1998) obtained the finite m AR and MA approximations by truncating respectively
the AR polynomial ϕ(L) = (1 − L)d = 1 −

∑∞
j=1

Γ(j+d)
Γ(d)Γ(j+1)L

j and the MA polynomial θ(L) =

(1 − L)−d = 1 +
∑∞

j=1
Γ(j−d)

Γ(−d)Γ(j+1)L
j . Here Γ(·) is the Gamma function. A better option is to obtain

the first m AR coefficients applying the Durbin-Levison algorithm to the Toeplitz variance covariance
matrix of the process.

2.3 AR(1) plus noise model

Consider an AR(1) process µt observed with error:

yt = µt + ϵt ϵt ∼ NID(0, σ2ϵ ),
µt+1 = ϕµt + ηt, ηt ∼ NID(0, σ2η)

where |ϕ| < 1 to ensure stationarity and E(ηtϵt+s) = 0, ∀s. The initial condition is µ1 ∼ N(µ̃1|0, P1|0).

Assuming that the process has started in the indefinitely remote past µ̃1|0 = 0, P1|0 =
σ2
η

1−ϕ2 . Alter-
natively, we may assume that the process started at time 1, so that P1|0 = 0 and µ1 is a fixed (though
possibly unknown) value.

If σ2ϵ = 0 then yt ∼ AR(1); on the other hand, if σ2η = 0 then yt ∼ NID(0, σ2ϵ ); finally, if ϕ = 0 then
the model is not identifiable.

When ϕ = 1, the local level (random walk plus noise) model is obtained.

2.4 Time-varying AR models

Consider the time varying VAR model yt =
∑p

k=1Φktyt−k + ξt, ξt = N(0,Σt) with random walk
evolution for the coefficients:

vec(Φk,t+1) = vec(Φk,t) + ηkt,ηkt ∼ NID(0,Ση);

(see Primiceri, 2005). Often Ση is taken as a scalar or a diagonal matrix.
The model can be cast in state space form, setting αt = [vec(Φ1)

′, . . . , vec(Φp)
′]′, Zt = [(y′

t−1 ⊗
I), . . . , (y′

t−p ⊗ I)],G = Σ1/2,Tt = I,H = Σ
1/2
η .

Time-varying volatility is incorporated by writing Gt = CtDt where Ct is lower diagonal with unit
diagonal elements and cij,t+1 = cij,t+ ζij,t, j < i, ζij,t ∼ NID(0, σ2ζ ), and Dt = diag(dit, i = 1, . . . , N ,
ln di,t+1 = ln dit + κit, κit ∼ NID(0, σ2κ). Allowing for time-varying volatility makes the model non
linear.
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2.5 Dynamic factor models

A simple model is yt = Λft + ut where Λ is the matrix of factor loadings, ft are q common factors
admitting a VAR representation ft+1 = Φft+ηt,ηt ∼ N(0,Ση), see Sargent and Sims (1977), Stock and
Watson (1989). For identification we need to impose q(q+1)/2 restrictions (see Geweke and Singleton,
1981). One possibility is to set Ση = I; alternatively, we could set Λ equal to a lower triangular matrix
with ones on the main diagonal.

2.6 Contemporaneous and future representations

The transition equation (2) has been specified in the so-called future form; in some treatment, e.g. Harvey
(1989) and West and Harrison (1996), the contemporaneous form of the model is adopted, with (2)
replaced by α∗

t = Ttα
∗
t−1 + Htεt, t = 1, . . . , n, whereas the measurement equation retains the form

yt = Z∗α∗
t +G∗εt. The initial conditions are usually specified in terms of α∗

0 ∼ N(0, σ2P0), which is
assumed to be distributed independently of εt, ∀t ≥ 1.

Simple algebra shows that we can reformulate the model in future form (1)-(2) with αt = α∗
t−1,Z =

Z∗T∗,G = G∗ + Z∗H∗.
For instance, consider the AR(1) plus noise model in contemporaneous form, specified as yt = µ∗t +

ϵ∗t , µ
∗
t = ϕµ∗t−1 + η∗t , with ϵ∗t and η∗t mutually and serially independent. Substituting from the transition

equation, yt = µ∗t−1 + η∗t + ϵ∗t , and setting µt = µ∗t−1, we can rewrite the model in future form, but the
disturbances ϵt = η∗t + ϵ∗t and ηt = η∗t will be (positively) correlated.

2.7 Fixed effects and explanatory variables

The linear state space model can be extended to introduce fixed and regression effects. There are essen-
tially two ways for handling them.

If we let Xt and Wt denote fixed and known matrices of dimension N × k and m× k, respectively,
the state space form can be generalised as follows:

yt = Ztαt +Xtβ +Gtεt, αt+1 = Ttαt +Wtβ +Htεt. (3)

In the sequel we shall express the initial state vector in terms of the vector β as follows:

α1 = α̃∗
1|0 +W0β +H0ε0, ε0 ∼ N(0, σ2I), (4)

where α̃∗
1|0, W0, H0, are known quantities.

Alternatively, β is included in the state vector and the state space model becomes:

yt = Z†
tα

†
t +Gtεt, α†

t+1 = T†
tα

†
t +H†

tεt,

where

α†
t =

[
αt

βt

]
, Z†

t = [Zt Xt], T†
t =

[
Tt Wt

0 Ik

]
,H†

t =

[
Ht

0

]
.

This representation opens the way to the treatment of β as a time varying vector.
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3 The Kalman filter

Consider a stationary state space model with no fixed effect (1)-(2) with initial condition α1 ∼ N(0, σ2P1|0),
independent of εt, t ≥ 1, and define Yt = {y1,y2, . . . ,yt}, the information set up to and including time
t, α̃t|t−1 = E(αt|Yt−1), and Var(αt|Yt−1) = σ2Pt|t−1.

The Kalman filter (KF) is the following recursive algorithm: for t = 1, . . . , n,

νt = yt − Ztα̃t|t−1, Ft = ZtPt|t−1Z
′
t +GtG

′
t,

Kt = (TtPt|t−1Z
′
t +HtG

′
t)F

−1
t ,

α̃t+1|t = Ttα̃t|t−1 +Ktνt, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t −KtFtK

′
t.

Hence, the KF computes recursively the optimal predictor of the states and thereby of yt conditional on
past information as well as the variance of their prediction error. The vector νt = yt − E(yt|Yt−1) is
the time t innovation. i.e. the new information in yt that could not be predicted from knowledge of the
past, also known as the one-step-ahead prediction error; σ2Ft is the prediction error variance at time t,
that is Var(yt|Yt−1). The one-step-ahead predictive distribution is yt|Yt−1 ∼ N(Ztα̃t|t−1, σ

2Ft). The
matrix Kt is sometimes referred to as the Kalman gain.

3.1 Proof of the Kalman Filter

Let us assume that α̃t|t−1, Pt|t−1 are given at the t-th run of the KF. The available information set is
Yt−1. Taking the conditional expectation of both sides of the measurement equations yields ỹt|t−1 =
E(yt|Yt−1) = Ztα̃t|t−1. The innovation at time t is νt = yt − Ztα̃t|t−1 = Zt(αt − α̃t|t−1) + Gtεt.
Moreover, Var(yt|Yt−1) = σ2Ft, where Ft = ZtPt|t−1Z

′
t + GtG

′
t. From the transition equation,

E(αt+1|Yt−1) = Ttα̃t|t−1 Var(αt+1|Yt−1) = Var
[
Tt(αt − α̃t|t−1) +Htεt

]
= σ2(TtPt|t−1T

′
t +

HtH
′
t), and Cov(αt+1,yt|Yt−1) = σ2(TtPt|t−1Z

′
t +HtG

′
t).

The joint conditional distribution of (αt+1,yt) is thus:

αt+1

yt

∣∣∣∣Yt−1 ∼ N
[(

Ttα̃t|t−1

Ztα̃t|t−1

)
, σ2

(
TtPt|t−1T

′
t +HtH

′
t, TtPt|t−1Z

′
t +HtG

′
t

ZtPt|t−1T
′
t +GtH

′
t, Ft

)]
which implies αt+1|Yt−1,yt ≡ αt+1|Yt ∼ N(α̃t+1|t, σ

2Pt+1|t) with α̃t+1|t = Ttα̃t|t−1+Ktνt,Kt =

(TtPt|t−1Z
′
t+HtG

′
t)F

−1
t ,Pt+1|t = TtPt|t−1T

′
t+HtH

′
t−KtFtK

′
t. Hence, Kt = Cov(αt,yt|Yt−1)

[Var(yt|Yt−1)]
−1 is the regression matrix of αt on the new information yt, given Yt−1.

3.2 Real time estimates and an alternative Kalman filter

The updated (real time) estimates of the state vector, α̃t|t = E(αt|Yt), and their covariance matrix
Var(αt|Yt) = σ2Pt|t are:

α̃t|t = α̃t|t−1 +Pt|t−1Z
′
tF

−1
t νt, Pt|t = Pt|t−1 −Pt|t−1Z

′
tF

−1
t ZtPt|t−1. (5)

The proof of (5) is straightforward. We start writing the joint distribution of the states and the last
observation, given the past:

αt

yt

∣∣∣∣Yt−1 ∼ N
[(

α̃t|t−1

Ztα̃t|t−1

)
, σ2

(
Pt|t−1, Pt|t−1Z

′
t

ZtPt|t−1, Ft

)]
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whence it follows αt|Yt−1,yt ≡ αt|Yt ∼ N(α̃t|t, σ
2Pt|t) with (5) providing, respectively,

E(αt|Yt) = E(αt|Yt−1) + Cov(αt,yt|Yt−1) [Var(yt|Yt−1)]
−1 [yt − E(yt|Yt−1)]

Var(αt|Yt) = Var(αt|Yt−1)− Cov(αt,yt|Yt−1) [Var(yt|Yt−1)]
−1 Cov(yt,αt|Yt−1).

The KF recursions for the states can be broken up into an updating step, followed by a prediction
step: for t = 1, . . . , n,

νt = yt − Ztα̃t|t−1, Ft = ZtPt|t−1Z
′
t +GtG

′
t,

α̃t|t = α̃t|t−1 +Pt|t−1Z
′
tF

−1
t νt, Pt|t = Pt|t−1 −Pt|t−1Z

′
tF

−1
t ZtPt|t−1.

α̃t+1|t = Ttα̃t|t +HtG
′
tF

−1
t νt, Pt+1|t = TtPt|tT

′
t +HtH

′
t −HtG

′
tF

−1
t GtH

′
t.

The last row follows from εt|Yt ∼ N
(
G′
tF

−1
t νt, σ

2(I −G′
tF

−1
t Gt)

)
. Also, when HtG

′
t = 0 (uncorre-

lated measurement and transition disturbances), the prediction equations in (3.2) simplify considerably.

3.3 Illustration: the AR(1) plus noise model

For the AR(1) plus noise process considered above, let σ2 = 1 and µ1 ∼ N(µ̃1|0, P1|0), µ̃1|0 = 0, P1|0 =
ση/(1− ϕ2). Hence, ỹ1|0 = E(y1|Y0) = µ̃1|0 = 0, so that at the first update of the KF,

ν1 = y1 − ỹ1|0 = y1 F1 = Var(y1|Y0) = Var(ν1) = P1|0 + σ2ϵ =
σ2η

1− ϕ2
+ σ2ϵ .

Note that F1 is the unconditional variance of yt. The updating equations will provide the mean and
variance of the distribution of µ1 given y1:

µ̃1|1 = E(µ1|Y1) = µ̃1|0 + P1|0F
−1
1 ν1 =

σ2η
1− ϕ2

[
σ2η

1− ϕ2
+ σ2ϵ

]−1

y1

P1|1 = Var(µ1|Y1) = P1|0 − P1|0F
−1
1 P1|0 =

σ2η
1− ϕ2

[
1−

σ2η/(1− ϕ2)

σ2η/(1− ϕ2) + σ2ϵ

]
.

It should be noticed that if σ2ϵ = 0, µ̃1|1 = y1 and P1|1 = 0 as the AR(1) process is observed without
error. On the contrary, when σ2ϵ > 0, y1 will be shrunk towards zero by an amount depending on the
relative contribution of the signal to the total variation.

The one-step-ahead prediction of the state and the state prediction error variance are:

µ̃2|1 = E(µ2|Y1)µ̃2|1 = ϕE(µ1|Y1) + E(η1|Y1) = ϕµ̃1|1

P2|1 = Var(µ2|Y1) = E(µ2 − ϕµ̃1|0)
2 = E[ϕ(µ1 − µ̃1|0) + η1]

2 = ϕ2P1|1 + σ2η.

At time t = 2, ỹ2|1 = E(y2|Y1) = µ̃2|1 = ϕµ̃1|1, so that ν2 = y2 − ỹ2|1 = y2 − µ̃2|1 and F2 =
Var(y2|Y1) = Var(ν2) = P2|1 + σ2ϵ , and so forth.

The KF equations (9) give for t = 1, . . . , n,

νt = yt − µ̃t|t−1, Ft = Pt|t−1 + σ2ϵ ,

Kt = ϕPt|t−1F
−1
t ,

µ̃t+1|t = ϕµ̃t|t−1 +Ktνt, Pt+1|t = ϕ2Pt|t−1 + σ2η − ϕ2P 2
t|t−1F

−1
t .

Notice that σ2ϵ = 0 ⇒ Ft = Pt|t−1 = σ2η and ỹt+1|t = µ̃t+1|t = ϕyt.
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3.4 Nonstationarity and regression effects

Consider the local level model,

yt = µt + ϵt ϵt ∼ NID(0, σ2ϵ ),
µt+1 = µt + ηt, ηt ∼ NID(0, σ2η).

which is obtained as a limiting case of the above AR(1) plus noise model, letting ϕ = 1. The signal is a
nonstationary process. How do we handle initial conditions in this case? We may alternatively assume:

i Fixed initial conditions: the latent process has started at time t = 0 with µ0 representing a fixed and
unknown quantity.

ii Diffuse (random) initial conditions: the process has started in the remote past, so that at time t = 1,
µ1 has a degenerate distribution centered at zero, µ̃1|0 = 0, but with variance tending to infinity:
P1|0 = κ, κ→ ∞.

In the first case, the model is rewritten as yt = µ0+αt+ϵt, αt+1 = αt+ηt, α1 ∼ N(α̃1|0, P1|0), α̃1|0 =
0, P1|0 = σ2η , which is a particular case of the augmented state space model (3). The generalized least
squares estimator of µ1 is µ̂0 = (i′Σ−1i)−1iΣ−1y, where y is the stack of the observations, i is a
vector of 1’s and Σ = σ2ϵ I + σ2ηCC′, where C is lower triangular with unit elements. We shall pro-
vide a more systematic treatment of the filtering problem for nonstationary processes in section (4.2).
In particular, the GLS estimator can be computed efficiently by the augmented KF. For the time being
we show that, under diffuse initial conditions, after processing one observation, the usual KF provides
proper inferences. At time t = 1 the first update of the KF, with initial conditions µ̃1|0 = 0 and P1|0 = κ,
gives:

ν1 = y1, F1 = κ+ σ2ϵ ,
K1 = κ/(κ+ σ2ϵ ),

µ̃2|1 = y1κ/(κ+ σ2ϵ ) P2|1 = σ2ϵκ/(κ+ σ2ϵ ) + σ2η.

The distribution of ν1 is not proper, as y1 is nonstationary and F1 → ∞ if we let κ→ ∞. Also, by letting
κ → ∞, we obtain the limiting values K1 = 1, µ̃2|1 = y1 P2|1 = σ2ϵ + σ2η . Notice that P2|1 no longer
depends upon κ and ν2 = y2 − y1 has a proper distribution, ν2 ∼ N(0, F2), with finite F2 = σ2η + 2σ2ϵ .
In general, the innovations νt, for t > 1, can be expressed as a linear combination of ∆yt,∆yt−1, . . .,
and thus they possess a proper distribution.

4 Maximum Likelihood Estimation

Let θ ∈ Θ ⊆ Rk denote a vector containing the so-called hyperparameters, i.e. the vector of structural
parameters other than the scale factor σ2. The state space model depends on θ via the system matrices
Zt = Zt(θ),Gt = Gt(θ),Tt = Tt(θ),Ht = Ht(θ) and via the initial conditions α̃1|0, P1|0.

Whenever possible, the constraints in the parameter space Θ are handled by transformations. Also,
one of the variance parameter is attributed the role of the scale parameter σ2. For instance, for the local
level model, we set: Z = T = 1,G = [1, 0], σ2 = σ2ϵ , εt ∼ NID(0, σ2ϵ I2), H = [0, eθ], θ = 1

2 ln q,
where q = σ2η/σ

2
ϵ is the signal to noise ratio.
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As a second example, consider the Harvey-Jaeger (1997) decomposition of US gross domestic prod-
uct(GDP): yt = µt + ψt, where µt is a local linear trend and ψt is a stochastic cycle. The state space
representation has αt = [µt βt ψt ψ

∗
t ]

′, Z = [1, 0, 1, 0], G = [0, 0, 0, 0], T = diag(Tµ,Tψ),

Tµ =

[
1 1
0 1

]
, Tψ = ρ

[
cosλ sinλ

− sinλ cosλ

]
,

H = diag
(
ση
σκ
,
σζ
σκ
, 1, 1

)
; εt =


ηtσκ/ση
ζtσκ/σζ
κt
κ∗t

 ∼ N(0, σ2κI4)

The parameter ρ is a damping factor, taking values in (0,1), and λ is the cycle frequency, restricted in
the range [0, π]. Moreover, the parameters σ2η and σ2ζ take nonnegative values. The parameter σ2κ is the
scale of the state space disturbance which will be concentrated out of the likelihood function.

We reparameterize the model in terms of the vector θ, which has four unrestricted elements, so that
Θ ⊆ R4, related to the original hyperparameters by:

σ2η
σ2κ

= exp(2θ1),
σ2ζ
σ2κ

= exp(2θ2),

ρ =
|θ3|√
1 + θ23

, λ =
2π

2 + exp θ4
.

Let ℓ(θ, σ2) denote the log-likelihood function, that is the logarithm of the joint density of the sample
time series {y1, . . . , yn} as a function of the parameters θ, σ2.

The log-likelihood can be evaluated by the prediction error decomposition:

ℓ(θ, σ2) = ln g(y1, . . . ,yn;θ, σ
2) =

n∑
t=1

ln g(yt|Yt−1;θ, σ
2).

Here g(·) denotes the Gaussian probability density function. The predictive density g(yt|Yt−1;θ, σ
2) is

evaluated with the support of the KF, as yt|Yt−1 ∼ NID(ỹt|t−1, σ
2Ft), so that

ℓ(θ, σ2) = −1

2

(
Nn lnσ2 +

n∑
t=1

ln |Ft|+
1

σ2

n∑
t=1

ν ′
tF

−1
t νt

)
. (6)

The scale parameter σ2 can be concentrated out of the LF: maximising ℓ(θ, σ2) with respect to σ2

yields
σ̂2 =

∑
t

ν ′
tF

−1
t νt/(Nn).

The profile (or concentrated) likelihood is

ℓσ2(θ) = −1

2

[
Nn(ln σ̂2 + 1) +

n∑
t=1

ln |Ft|

]
. (7)
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This function can be maximised numerically by a quasi-Newton optimisation routine, by iterating the
following updating scheme:

θ̃k+1 = θ̃k − λk

[
∇2ℓσ2(θ̃k)

]−1
∇ℓσ2(θ̃k),

where λk is a variable step-length, and ∇ℓσ2(θ̃k) and ∇2ℓσ2(θ̃k) are respectively the gradient and hes-
sian, evaluated at θ̃k. The analytical gradient and hessian can be obtained in parallel to the Kalman filter
recursions; see Harvey (1989) and Proietti (1999), for an application.

The innovations are a martingale difference sequence, E(νt|Yt−1) = 0, which implies that they are
uncorrelated with any function of their past: using the law of iterated expectations E(νtνt−j |Yt−1) = 0.
Under Gaussianity they will also be independent.

The KF performs a linear transformation of the observations with unit Jacobian: if ν denotes the
stack of the innovations and y that of the observations: then ν = C−1y, where C−1 is a lower triangular
matrix such that Σy = Cov(y) = σ2CFC′,

C =



I 0 0 . . . 0 0
−Z2K1 I 0 . . . 0 0

−Z3L3,2K1 −Z3K2 I
. . . 0 0

...
...

. . . . . . . . .
...

−Zn−1Ln−1,2K1, −Zn−1Ln−1,3K2, . . .
. . . I 0

−ZnLn,2K1, −ZnLn,3K2, −ZnLn,4K3, . . . −ZnKn−1, I


, (8)

where Lt = Tt−KtZ
′
t, and Lt,s = Lt−1Lt−2 · · ·Ls for t > s, Lt,t = I and F = diag(F1, . . . ,Ft, . . . ,Fn).

Hence, νt is a linear combination of the current and past observations and is orthogonal to the informa-
tion set Yt−1. As a result |Σy| = σ2n|F| = σ2n

∏
t |Ft| and y′Σ−1

y y = 1
σ2ν

′F−1ν = 1
σ2

∑
t νtF

−1
t νt.

4.1 Properties of maximum likelihood estimators

Under regularity conditions, the maximum likelihood estimators of θ are consistent and asymptotically
normal, with covariance matrix equal to the inverse of the asymptotic Fisher information matrix (see
Caines, 1988). Besides the technical conditions regarding the existence of derivatives and their continuity
about the true parameter, regularity requires that the model is identifiable and the true parameter values
do not lie on the boundary of the parameter space. For the AR(1) plus noise model introduced in section
2.3 these conditions are violated, for instance, when ϕ = 0 and when ϕ = 1 or σ2ϵ = 0, respectively.
While testing for the null hypothesis ϕ = 0 against the alternative ϕ ̸= 0 is standard, based on the
t-statistics of the coefficient yt−1 in the regression of yt on yt−1 or on the first order autocorrelation,
testing for unit roots or deterministic effects is much more involved, since likelihood ratio tests do not
have the usual chi square distribution. Testing for deterministic and non stationary effects in unobserved
component models is considered in Nyblom (1996) and Harvey (2001).

Pagan (1980) has derived sufficient conditions for asymptotic identifiability in stationary models and
sufficient conditions for consistency and asymptotic normality of the maximum likelihood estimators in
non stationary but asymptotically identifiable models. Strong consistency of the maximum likelihood
estimator in the general case of a non compact parameter space is proved in Hannan and Deistler (1988).
Recently, full asymptotic theory for maximum likelihood estimation of nonstationary state space models
has been provided by Chang, Miller and Park (2009).
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4.2 Profile and Marginal likelihood for Nonstationary Models with Fixed and Regression
Effects

Let us consider the case when nonstationary state elements and exogenous variables are present. The
relevant state space form is (3), and the initial conditions are stated in (4).

Let us start from the simple case when the vector β is fixed and known, so that α1 ∼ N(α̃∗
1|0 +

W0β, σ
2P∗

1|0), where P∗
1|0 = H0H

′
0.

The KF for this model becomes, for t = 1, . . . , n:

ν∗
t = yt − Ztα̃

∗
t|t−1 −Xtβ, F∗

t = ZtP
∗
t|t−1Z

′
t +GtG

′
t,

K∗
t = (TtPt|t−1Z

′
t +HtG

′
t)F

∗−1
t ,

α̃∗
t+1|t = Ttα̃

∗
t|t−1 +Wtβ +K∗

tν
∗
t , P∗

t+1|t = TtP
∗
t|t−1T

′
t +HtH

′
t −K∗

tF
∗
tK

∗′
t

(9)

We refer to this filter as KF(β). Apart from a constant term, the log likelihood is as given in (6), whereas,
(7) is the profile likelihood.

The KF and the definition of the likelihood need to be amended when nonstationary and regression
effects are present. An instance is provided by the local level model, for which Zt = 1, Xt = 0, αt = µt,
Gt = [1, 0], σ2 = σ2ϵ , εt = [ϵt, σϵηt/ση]

′,Ht = [0, ση/σϵ], Tt = 1,Wt = 0,

α̃∗
1|0 = 0,W0 = 1,β = µ0,H0 = [0, ση/σϵ].

If a scalar explanatory variable is present, xt, with coefficient γ: Xt = [0, xt],β = [µ0, γ]
′,W0 =

[1, 0],Wt = [0, 0], t > 0.
When β is fixed but unknown, Rosenberg (1973) showed that it can be concentrated out of the likeli-

hood function and that its generalised least square estimate is obtained from the output of an augmented
KF. In fact, α1 has mean α̃1|0 = α̃∗

1|0 + W0β and a covariance matrix P∗
1|0 = σ2H0H

′
0. Defining

A1|0 = −W0, rewriting α̃1|0 = α̃∗
1|0 −A1|0β, and running the KF recursions for a fixed β, we obtain

the set of innovations νt = ν∗
t −Vtβ and one-step-ahead state predictions α̃t+1|t = α̃∗

t+1|t −At+1|tβ,
as a linear function of β.

In the above expressions the starred quantities, ν∗
t and α̃∗

t+1|t, are produced by the KF run with β = 0,
i.e. with initial conditions α̃∗

1|0 and P∗
1|0, hereby denoted KF(0). The latter also computes the matrices

F∗
t , K

∗
t and P∗

t+1|t, t = 1, . . . , n, that do not depend on β.
The matrices Vt and At+1|t are generated by the following recursions, that are run in parallel to

KF(0):
Vt = Xt − ZtAt|t−1, At+1|t = TtAt|t−1 +Wt +K∗

tVt, t = 1, . . . , T, (10)

with initial value A1|0 = −W0. Notice that this amounts to running the same filter, KF(0), on each of
the columns of the matrix Ut.

Then, replacing νt = ν∗
t − Vtβ into the expression for the log-likelihood (6), and defining sn =∑n

1 V
′
tF

∗−1
t ν∗

t and Sn =
∑n

1 V
′
tF

∗−1
t Vt, yields, apart from a constant term:

ℓ(θ, σ2,β) = −1

2

(
Nn lnσ2

n∑
t=1

ln |F∗
t |+ σ−2

[
n∑
t=1

ν∗′
t F

∗−1
t ν∗

t − 2β′sn + β′Snβ

])
. (11)
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Hence, the maximum likelihood estimate of β is β̂ = S−1
n sn. This is coincident with the generalized

least square estimator. The profile likelihood (with respect to β) is

ℓβ(θ, σ
2) = −1

2

(
Nn lnσ2 +

n∑
t=1

ln |F∗
t |+ σ−2

[
n∑
t=1

ν∗′
t F

∗−1
t ν∗

t − s′nS
−1
n sn

])
(12)

The MLE of σ2 is

σ̂2 =
1

Nn

[
n∑
t=1

ν∗′
t F

∗−1
t ν∗

t − s′nS
−1
n sn

]
and the profile likelihood (also with respect to σ2) is

ℓβ,σ2(θ) = −1

2

[
Nn(ln σ̂2 + 1) +

n∑
t=1

ln |F∗
t |

]
. (13)

The vector β is said to be diffuse if β ∼ N(0,Σβ), where Σ−1
β → 0. The diffuse likelihood is defined

as the limit of ℓ(θ, σ2,β) as Σ−1
β → 0. This yields

ℓ∞(θ, σ2) = −1

2

{
N(n− k) lnσ2 +

∑
ln |F∗

t |+ ln |Sn|+ σ−2
[∑

ν∗′
t F

∗−1
t ν∗

t − s′nS
−1
n sn

]
,
}

where k is the number of elements of β. The MLE of σ2 is

σ̂2 =
1

N(n− k)

[
n∑
t=1

ν∗′
t F

∗−1
t ν∗

t − s′nS
−1
n sn

]

and the profile likelihood is

ℓ∞,σ2(θ) = −1

2

[
N(n− k)(ln σ̂2 + 1) +

n∑
t=1

ln |F∗
t |+ ln |Sn|

]
. (14)

The notion of a diffuse likelihood is close to that of a marginal likelihood, being based on reduced
rank linear transformation of the series that eliminates dependence on β; see the next subsection and
Francke, Koopman and de Vos (2010).

de Jong (1991) has further shown that the limiting expressions for the innovations, the one-step-ahead
prediction of the state vector and the corresponding covariance matrices are

νt = ν∗
t −VtS

−1
t−1st−1, Ft = F∗

t +VtS
−1
t−1V

′
t,

α̃t|t−1 = α̃∗
t|t−1 −At|t−1S

−1
t−1st−1, Pt|t−1 = P∗

t|t−1 +At|t−1S
−1
t−1A

′
t|t−1.

(15)

de Jong and Chu-Chun-Lin (1994) show that the additional recursions (10) referring to initial conditions
can be collapsed after a suitable number of updates (given by the rank of W0).
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4.3 Discussion

The augmented state space model (3) can be represented as a linear regression model y = Xβ+ u for a
suitable choice of the matrice X, Under the Gaussian assumption y ∼ N(Xβ,Σu), the MLE of β is the
GLS estimator

β̂ = (X′Σ−1
u X)−1X′Σ−1

u y.

Consider the LDL decomposition (see, for instance, Golub and Van Loan, 1996) of the matrix Σu,
Σu = C∗F∗C∗′ , where C∗ has the same structure as (8). The KF(0) applied to y yields v∗ = C∗−1y.
When applied to each of the deterministic regressors making up the columns of the X matrix, it gives
V = C∗−1X. The GLS estimate of β is thus obtained from the augmented KF as follows:

β̂ = (X′C∗−1′F∗−1C∗−1X)−1X′C∗−1′F∗−1C∗−1y
= (V′F∗−1V)−1V′F∗−1v∗

=
(∑

tVtF
∗−1
t V′

t

)−1∑
tVtF

∗−1
t v∗

t

The restricted or marginal log-likelihood estimator of θ is the maximiser of the marginal likelihood
defined by Patterson and Thompson (1971) and Harville (1977):

ℓR(θ, σ
2) = ℓβ(θ, σ

2)− 1
2

[
ln
∣∣X′Σ−1

u X
∣∣− ln |X′X|

]
= −1

2

{
ln |Σu|+ ln

∣∣X′Σ−1
u X

∣∣− ln |X′X|+ y′Σ−1
u y − y′Σ−1

u X(X′Σ−1
u X)−1X′Σ−1

u y
}
.

Simple algebra shows that ℓR(θ, σ2) = ℓ∞(θ, σ2) + 0.5 ln |X′X|. Thus the marginal MLE is obtained
from the assumption that the vector β is a diffuse random vector, i.e. it has an improper distribution with
a mean of zero and an arbitrarily large variance matrix.

The restricted likelihood is the likelihood of a non-invertible linear transformation of the data, (I −
QX)y, QX = X(X′Σ−1

y X)−1X′Σ−1
y , which eliminates the dependence on β. The maximiser of

ℓR(θ, σ
2) is preferable to the profile likelihood estimator when n is small and the variance of the random

signal is small compared to that of the noise.

4.4 Missing values and sequential processing

In univariate models missing values are handled by skipping the KF updating operations: if yi is missing
at time i, νi and Fi cannot be computed and α̃i+1|i−1 = Tiα̃i|i−1, Pi+1|i−1 = TiPi|i−1T

′ +HiH
′
i are

the moments of the two-step-ahead predictive distribution.
For multivariate models, when yi is only partially missing, sequential processing must be used. This

technique, illustrated by Anderson and Moore (1979) and further developed by Koopman and Durbin
(2000) for nonstationary models, provides a very flexible and convenient device for filtering and smooth-
ing and for handling missing values. Our treatment is prevalently based on Koopman and Durbin (2000).
However, for the treatment of regression effects and initial conditions we adopt the augmentation ap-
proach by de Jong (1991).

Assume, for notation simplicity, a time invariant model with HG′ = 0 (uncorrelated measurement
and transition disturbances) and GG′ = diag{g2i , i = 1, . . . , N}, so that the measurements yt,i are
conditionally independent, given αt. The latter assumption can be relaxed: a possibility is to include
Gεt in the state vector, and set g2i = 0, ∀i; alternatively, we can transform the measurement equation so
as to achieve that the measurement disturbances are fully idiosyncratic.
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The multivariate vectors yt, t = 1, . . . , n, where some elements can be missing, are stacked one on
top of the other to yield a univariate time series {yt,i, i = 1, . . . , N, t = 1, . . . , n}, whose elements
are processed sequentially. The state space model for the univariate time series {yt,i} is constructed as
follows.

The new measurement equation for the i-th element of the vector yt is:

yt,i = z
′
iαt,i + x′

t,iβ + giε
∗
t,i, t = 1, . . . , n, i = 1, . . . , N, ε∗t,i ∼ NID(0, σ2) (16)

where z
′
i and x′

t,i denote the i-th rows of Z and Xt, respectively. Notice that (16) has two indices: the
time index runs first and it is kept fixed as series index runs.

The transition equation varies with the two indices. For a fixed time index, the transition equation is
the identity αt,i = αt,i−1, for i = 2, . . . , N, whereas, for i = 1,

αt,1 = Tαt−1,N +Wβ +Hϵt,1

The state space form is completed by the initial state vector which is α1,1 = a1,1 +W0β +H0ϵ1,1,
where Var(ϵ1,1) = Var(ϵt,1) = σ2I.

The augmented Kalman filter, taking into account the presence of missing values, is given by the
following definitions and recursive formulae.

• Set the initial values a1,1 = 0,A1,1 = −W0,P1,1 = H0H
′
0, q1,1 = 0, s1,1 = 0,S1,1 = 0,

d1,1 = 0,

• for t = 1, . . . , n, i = 1, . . . , N − 1,

– if y†t,i is available:

vt,i = yt,i − z
′
iat,i, V′

t,i = x′
t,i − z

′
iAt,i,

ft,i = z
′
iPt,iz

′
i + g2i , Kt,i = Ptz

′
i/ft,i

at,i+1 = at,i +Kt,ivt,i, At,i+1 = At,i +Kt,iV
′
t,i,

Pt,i+1 = Pt,i −Kt,iK
′
t,ift,

qt,i+1 = qt,i + v2t,i/ft,i, st,i+1 = st,i +Vt,ivt,i/ft,i
St,i+1 = St,i +Vt,iV

′
t,i/ft,i dt,i+1 = dt,i + ln ft,i

cn = cn+ 1

(17)

Here, cn counts the number of observations.

– Else, if yt,i is missing:

at,i+1 = at,i, At,i+1 = At,i,
Pt,i+1 = Pt,i,
qt,i+1 = qt,i, st,i+1 = st,i, St,i+1 = St,i, dt,i+1 = dt,i.

(18)

• For i = N , compute:

at+1,1 = Tat,N , At+1,1 = W +TAt,N ,

Pt+1,1 = TPt,NT
′
+HH

′
,

qt+1,1 = qt,N , st+1,1 = st,N , St+1,1 = St,N , dt+1,1 = dt,N .

(19)
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Under the fixed effects model maximising the likelihood with respect to β and σ2 yields:

β̂ = S−1
n+1,1sn+1,1,Var(β̂) = S−1

n+1,1, σ̂2 =
qn+1,1 − s′n+1,1S

−1
n+1,1sn+1,1

cn
, (20)

The profile likelihood is ℓβ,σ2 = −0.5
[
dn+1,1 + cn

(
ln σ̂2 + ln(2π) + 1

)]
.

When β is diffuse, the maximum likelihood estimate of the scale parameter is

σ̂2 =
qn+1,1 − s′n+1,1S

−1
n+1,1sn+1,1

cn− k
,

and the diffuse profile likelihood is:

ℓ∞ = −0.5
[
dn+1,1 + (cn− k)

(
ln σ̂2 + ln(2π) + 1

)
+ ln |Sn+1,1|

]
. (21)

This treatment is useful for handling estimation with mixed frequency data. Also, temporal aggre-
gation can be converted into a systematic sampling problem an handled by sequential processing; see
Harvey and Chung (2000) and Frale et al. (2011), among others.

4.5 Linear constraints

Suppose that the vector αt is subject to c linear binding constraints Ctαt = ct, with Ct and ct fixed and
known. An example is a Cobb-Douglas production function with time varying elasticities, but constant
returns to scale in every time period. See Doran (1992) for further details.

These constraints are handled by augmenting the measurement equation with further c observations:[
yt
ct

]
=

[
Zt
Ct

]
αt +

[
Gt

0

]
εt.

Non-binding constraints are easily accommodated.

4.6 A simulated example

We simulated n = 100 observations from a local level model with signal tp noise ratio q = 0.01.
Subsequently, 10 observations (for t = 60-69) were deleted, and the parameter 0.5 ln q estimated by
profile and diffuse MLE. Figure 1 displays the simulated series and true level (left), and the profile and
diffuse likelihood (right).

The maximiser of the diffuse likelihood is higher and closer to the true value, which amounts to -
2.3. This illustrates that the diffuse likelihood in small samples provides a more accurate estimate of the
signal to noise ratio when the latter is close to the boundary of the parameter space.

5 The EM Algorithm

Maximum likelihood estimation of the standard time invariant state space model can be carried out by
the EM algorithm (see See Shumway and Stoffer, 1982, and Cappè, Moulines and Rydén, 2007). In the
sequel we will assume without loss of generality σ2 = 1.
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Figure 1: Simulated series from a local level model with q = 0.1 (0.5 ln q = −2.3) and underlying level
(left). Plot of the profile and diffuse likelihood of the parameter 0.5 ln q.
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Let y = [y′
1, . . . ,yn]

′, α = [α′
1, . . . ,α

′
n]

′. The log-posterior of the states is ln g(α|y;θ) =
ln g(y,α;θ) − ln g(y;θ), where the first term on the right hand side is the joint probability density
function of the observations and the states, also known as the complete data likelihood, and the subtra-
hend is the likelihood, ℓ(θ) = ln g(y;θ), of the observed data.

The complete data log-likelihood can be evaluated as follows: ln g(y,α;θ) = ln g(y|α;θ)+ln g(α;θ),
where ln g(y|α;θ) =

∑n
t=1 ln g(yt|αt), and ln g(α;θ) =

∑n
t=1 ln g(αt+1|αt;θ) + ln g(α1;θ). Thus,

from (1)-(2),

ln g(y,α;θ) = −1
2

[
n ln |GG′|+ tr

{
(GG′)−1

∑n
t=1(yt − Zαt)(yt − Zαt)

′}]
−1

2

[
n ln |HH′|+ tr

{
(HH′)−1

∑n
t=2(αt+1 −Tαt)(αt+1 −Tαt)

′}]
−1

2

[
ln |P1|0|+ tr

{
P−1

1|0α1α
′
1

}]
where P0 satisfies the matrix equation P1|0 = TP1|0T

′+HH′ and we take, with little loss in generality,
α̃1|0 = 0.

Given an initial parameter value, θ∗, the EM algorithm iteratively maximizes, with respect to θ, the
intermediate quantity (Dempster et al., 1977):

Q(θ;θ∗) = Eθ∗ [ln g(y,α;θ)] =

∫
ln g(y,α;θ)g(α|y;θ∗)dα,

which is interpreted as the expectation of the complete data log-likelihood with respect to g(α|y;θ∗),
which is the conditional probability density function of the unobservable states, given the observations,
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evaluated using θ∗. Now,

Q(θ;θ∗) = −1
2

[
n ln |GG′|+ tr

{
(GG′)−1

∑n
t=1

[
(yt − Zα̃t|n)(yt − Zα̃t|n)

′ + ZPt|nZ
′]}]

−1
2

[
n ln |HH′|+ tr

{
(HH′)−1(Sα − Sα,α−1T

′ −TS ′
α,α−1 +TSα−1T

′)
}]

−1
2

[
ln |P0|+ tr

{
P−1

0 (α̃0|nα̃
′
0|n +P0|n)

}]
where α̃t|n = E(αt|y;θ(j)), Pt|n = Var(αt|y;θ(j)), and

Sα =

[
n∑
t=2

(
Pt+1|n + α̃t+1|nα̃

′
t+1|n

)]
,

Sα−1 =

[
n∑
t=2

(
Pt|n + α̃t|nα̃

′
t|n

)]
,Sα,α−1 =

[
n∑
t=2

(
Pt+1,t|n + α̃t+1|nα̃

′
t|n

)]
.

These quantities are evaluated with the support of the Kalman filter and smoother (KFS, see below),
adapted to the state space model (1)-(2) with parameter values θ∗. Also, Pt+1,t|n = Cov(αt+1,αt|y;θ∗)
is computed using the output of the KFS recursions, as it will be detailed below.

Dempster et al. (1977) show that the parameter estimates maximising the log-likelihood ℓ(θ), can be
obtained by a sequence of iterations, each consisting of an expectation step (E-step) and a maximization
step (M-step), that aim at locating a stationary point of Q(θ;θ∗). At iteration j, given the estimate θ(j),
the E-step deals with the evaluation of Q(θ;θ(j)); this is carried out with the support of the KFS applied
to the state space representation (1)-(2) with hyperparameters θ(j).

The M-step amounts to choosing a new value θ(j+1), so as to maximize with respect to θ the criterion
Q(θ;θ(j)), i.e., Q(θ(j+1);θ(j)) ≥ Q(θ(j);θ(j)). The maximization is in closed form, if we assume that
P0 is an independent unrestricted parameter. Actually, the latter depends on the matrices T and HH′,
but we will ignore this fact, as it is usually done. For the measurement matrix the M-step consists of
maximizing Q(θ;θ(j)) with respect to Z, which gives

Ẑ(j+1) =

(
n∑
t=1

ytα̃
′
t|n

)
S−1
α .

The (j + 1) update of the matrix GG′ is given by

ĜG′(j+1)
= diag

{
1

n

n∑
t=1

[
yty

′
t − Ẑ(j+1)α̃t|ny

′
t

]}
.

Further, we have:

T̂(j+1) = Sα,α−1S−1
α−1, ĤH′(j+1)

=
1

n

(
Sf − T̂(j+1)S ′

α,α−1

)
.

5.1 Smoothing algorithm

The smoothed estimates α̃t|n = E(αt|y;θ), and their covariance matrix Pt|n = E[(αt − α̃t|n)(αt −
α̃t|n)

′|y;θ], are computed by the following backwards recursive formulae, given by Bryson and Ho
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(1969) and de Jong (1989), starting at t = n, with initial values rn = 0,Rn = 0 and Nn = 0: for
t = n− 1, . . . , 1,

rt−1 = L′
trt + Z′

tF
−1
t vt, Mt−1 = L′

tMtLt + Z′
tF

−1
t Zt,

α̃t|n = α̃t|t−1 +Pt|t−1rt−1, Pt|n = Pt|t−1 −Pt|t−1Mt−1Pt|t−1.
(22)

where Lt = Tt −KtZ
′.

Finally, it can be shown that Pt,t−1|n = Cov(αt,αt−1|y) = TtPt−1|n −HtH
′
tMt−1Lt−1Pt−1|t−2.

6 Nonlinear and Non-Gaussian Models

A general state space model is such that the density of the observations is conditionally independent,
given the states, i.e.

p(y1, . . . ,yn|α1, . . . ,αn;θ) =

n∏
t=1

p(yt|αt;θ), (23)

and the transition density has the Markovian structure,

p(α0,α1, . . . ,αn|θ) = p(α0|θ)
n−1∏
t=0

p(αt+1|αt;θ). (24)

The measurement and the transition density belong to a given family. The linear Gaussian state space
model (1)-(2) arises when p(yt|αt;θ) ∼ N(Ztαt, σ

2GtG
′
t) and p(αt+1|αt;θ) ∼ N(Ttαt, σ

2HtH
′
t).

An important special case is the class of generalized linear state space models, which are such that
the states are Gaussian and the transition model retains its linearity, whereas the observation density
belongs to the exponential family. Models for time series observations originating from the exponential
family, such as count data with Poisson, binomial, negative binomial and multinomial distributions, and
continuous data with skewed distributions such as the exponential and gamma have been considered by
West and Harrison (1997), Fahrmeir and Tutz (2000) and Durbin and Koopman (2001), among others.
In particular, the latter perform MLE by importance sampling; see section 6.2.

Models for which some or all of the state have discrete support (multinomial) are often referred to as
Markov switching models; usually, conditionally on those states, the model retains a Gaussian and linear
structure. See Cappé, Moulines and Rydén (2007) and Kim and Nelson (1999) for macroeconomic
applications.

In a more general framework, the predictive densities required to form the likelihood via the prediction
error decomposition, need not be available in closed form and their evaluation calls for Monte Carlo or
deterministic integration methods. Likelihood inference is straightforward only for a class of models
with a single source of disturbance, known as observation driven models; see Ord, Koehler and Snyder
(1997) and section 6.5.

6.1 Extended Kalman Filter

A nonlinear time series model is such that the observations are functionally related in a nonlinear way to
the states, and/or the states are subject to a nonlinear transition function. Nonlinear state space represen-
tations typically arise in the context of DSGE models. Assume that the state space model is formulated
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as
yt = Zt(αt) + Gt(αt)εt
αt+1 = Tt(αt) +Ht(αt)εt, α1 ∼ N(α̃1|0,P1|0),

(25)

where Zt(·) and Tt(·) are known smooth and differentiable functions.
Let at denote a representative value of αt. Then, by Taylor series expansion, the model can be

linearized around the trajectory at, t = 1, . . . , n, giving,

yt = Z̃tαt + ct +Gtεt,

αt+1 = T̃tαt + dt +Htεt, α1 ∼ N(α̃1|0,P1|0),
(26)

where

Z̃t =
∂Zt(αt)

∂αt

∣∣∣∣
αt=at

, ct = Zt(at)− Z̃tat,Gt = Gt(at),

and

T̃t =
∂Tt(αt)

∂αt

∣∣∣∣
αt=at

, dt = Tt(at)− T̃tat,Ht = Ht(at).

The extended Kalman filter results from applying the KF to linearized model. The latter depends
on at and we stress this dependence by writing KF(at). The likelihood of the linearized model is then
evaluated by KF(at), and can be maximized with respect to the unknown parameters. See Jazwinski
(1970) and Anderson and Moore (1979, ch. 8).

The issue is the choice of the value at around which the linearization is taken. One possibility is to
choose at = αt|t−1, where the latter is delivered recursively on line as the observations are processed in
(9). A more accurate solution is to use at = αt|t−1 for the linearization of the measurement equation and
at = αt|t for that of the transition equation, using the prediction-updating variant of the filter of section
(3.2).

Assuming, for simplicity Gt(αt) = Gt, Ht(α) = Ht, and εt ∼ NID(0, σ2I), the linearization can
be performed using the iterated extended KF (Jazwinski, 1970, ch. 8), which determines the trajectory
{at} as the maximizer of the posterior kernel:∑

t

(yt −Zt(at))′ (GtG
′
t)
−1 (yt −Zt(at)) +

∑
t

(at+1 − Tt(at))′ (HtH
′
t)
−1 (at+1 − Tt(at))

with respect to {at, t = 1, . . . , n}. This is referred to as posterior mode estimation, as it locates the
posterior mode of α given y, and is carried out iteratively by the following algorithm:

1. Start with at trial trajectory {at}

2. Linearize the model around it

3. Run the Kalman filter and smoothing algorithm (22) to obtain a new trajectory at = α̃t|n

4. Iterate steps 2-3 until convergence.

Rather than approximating a nonlinear function, the unscented KF (Julier and Uhlmann, 1996, 1997),
is based on an approximation of the distribution of αt|Yt based on a deterministic sample of representa-
tive sigma points, characterised by the same mean and covariance as the true distribution of αt|Yt. When
these points are propagated using the true nonlinear measurement and transition equations, the mean and
covariance of the predictive distributions αt+1|Yt and yt+1|Yt can be approximated accurately (up to
the second order) by the weighted average of the transformation of the chosen sigma points.
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6.2 Likelihood Evaluation via Importance Sampling

Let p(y) denote the joint density of the n observations (as a function of θ, omitted from the notation), as
implied by the original non Gaussian and nonlinear model. Let g(y) be the likelihood of the associated
linearized model. See Durbin and Koopman (2001) for the linearization of exponential family models,
non Gaussian observation densities such as Student’s t, as well as non Gaussian state disturbances; for
functionally nonlinear models see above.

The estimation of the likelihood via importance sampling is based on the following identity:

p(y) =
∫
p(y,α)dα = g(y)

∫ p(y,α)
g(y,α)g(α|y)dα = g(y)Eg

[
p(y,α)
g(α|y)

]
(27)

The expectation, taken with respect to the conditional Gaussian density g(α|y), can be estimated by
Monte Carlo simulation using importance sampling: in particular, after having linearized the model by
posterior mode estimation, M samples α(m),m = 1, . . . ,M, are drawn from g(α|y), the importance
sampling weights

wm =
p(y,α(m))

g(y,α(m))
=
p(y|α(m))p(α(m))

g(y|α(m))g(α(m))
,

are computed and the the above expectation is estimated by the average 1
M

∑
mwm. Sampling from

g(α|y) is carried out by the simulation smoother illustrated in the next subsection. The proposal dis-
tribution is multivariate normal with mean equal to the posterior mode α̃t|n. The curvature around the
mode can also be matched in special cases, in the derivation of the Gaussian linear auxiliary model. See
Shepard and Pitt (1997), Durbin and Koopman (2001), and Richard and Zhang (2007) for further details.

6.3 The simulation smoother

The simulation smoother is an algorithm which draws samples from the conditional distribution of the
states, or the disturbances, given the observations and the hyperparameters. We focus on the simulation
smoother proposed by Durbin and Koopman (2002).

Let ηt denote a random vector (e.g. a selection of states or disturbances) and let η̃ = E(η|y), where η
is the stack of the vectors ηt; η̃ is computed by the Kalman filter and smoother. We can write η = η̃+e,
where e = η − η̃ is the smoothing error, with conditional distribution e|y ∼ N(0,V), such that the
covariance matrix V does not depend on the observations, and thus does not vary across the simulations
(the diagonal blocks are computed by the smoothing algorithm).

A sample η∗ from η|y is constructed as follows:

• Draw (η+,y+) ∼ g(η,y).

As p(η,y) = g(η)g(y|η), this is achieved by first drawing η+ ∼ g(η) from an unconditional
Gaussian distribution, and constructing the pseudo observations y+ recursively from α+

t+1 =
Ttα

+
t +Htϵ

+
t ,y

+
t = Ztα

+
t +Gtϵ

+
t , t = 1, 2, . . . , n,where the initial draw is α+

1 ∼ N(α̃1|0,P1|0),
so that y+ ∼ g(y|η).

• The Kalman filter and smoother computed on the simulated observations y+
t will produce η̃+, and

η+ − η̃+ will be the required draw from e|y.

Hence , η̃ + η+ − η̃+ is the required sample from η|y ∼ N(η̃,V).
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6.4 Sequential Monte Carlo Methods

For a general state space model, the one-step-ahead predictive densities of the states and the observations,
and the filtering density are respectively:

p(αt+1|Yt) =
∫
p(αt+1|αt)p(αt|Yt)dαt = Eαt|Yt [p(αt+1|αt)]

p(yt+1|Yt) =
∫
p(yt+1|αt+1)p(αt+1|Yt)dαt+1 = Eαt+1|Yt [p(yt+1|αt+1)]

p(αt+1|Yt+1) = p(αt+1|Yt)p(yt+1|αt+1)/p(yt+1|Yt)

(28)

Sequential Monte Carlo methods provide algorithms, known as particle filters, for recursive, or on-line,
estimation of the predictive and filtering densities in (28). They deal with the estimation of the above
expectations as averages over Monte Carlo samples from the reference density, exploiting the fact that
p(αt+1|αt) and p(yt+1|Yt) are easy to evaluate, as they depend solely on the model prior specification.

Assume that at any time t an IID sample of size M from the filtering density p(αt|Yt) is available,
with each draw representing a “particle”, α(i)

t , i = 1, . . . ,M , so that the true density is approximated by
the empirical density function:

p̂(αt ∈ A|Yt) =
1

M

M∑
i=1

I(α
(i)
t ∈ A), (29)

where I(·) is the indicator function.
The Monte Carlo approximation to the state and measurement predictive densities is obtained by

generating α
(i)
t+1|t ∼ p(αt+1|α(i)

t ), i = 1, . . . ,M and y
(i)
t+1|t ∼ p(yt+1|α(i)

t+1), i = 1, . . . ,M .
The crucial issue is to obtain a new particle characterisation of the filtering density p(αt+1|Yt+1),

avoiding particle degeneracy, i.e. a non representative sample of particles. To iterate the process
it is necessary to generate new particles from p(αt+1|Yt+1) with probability mass equal to 1/M ,
so that the approximation to the filtering density will have the same form as (29), and the sequen-
tial simulation process can progress. A direct application of the last row in 28 suggest a weighted
resampling (Rubin, 1987) of the particles α

(i)
t+1|t ∼ p(αt+1|α(i)

t ), with importance weights wi =

p(yt+1|α(i)
t+1|t)/

∑M
j=1 p(yt+1|α(j)

t+1|t). the resampling step eliminates particles with low importance
weights and propagates those with high wi’s. This basic particle filter is known as the bootstrap (or
Sampling/Importance Resampling, SIR) filter; see Gordon, Salmond and Smith (1993) and Kitagawa
(1996).

A serious limitation is that the particles, α(i)
t+1|t, originate from the prior density and are “blind” to

the information carried by yt+1; this may deplete the representativeness of the particles when the prior
is at conflict with the likelihood, p(yt+1|α(i)

t+1|t), resulting in a highly uneven distribution of the weights
wi. A variety of sampling schemes have been proposed to overcome this conflict, such as the auxiliary
particle filter; see Pitt and Shephard (1999) and Doucet, de Freitas and Gordon (2001).

More generally, in a sequential setting, we aim at simulating α
(i)
t+1 from the target distribution:

p(αt+1|αt,Yt+1) =
p(αt+1|αt)p(yt+1|αt+1)

p(yt+1|αt)
,
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where typically, only the numerator is available. Let g(αt+1|αt,Yt+1) be an importance density, avail-
able for sampling α

(i)
t+1 ∼ g(αt+1|α(i)

t ,Yt+1) and let

wi ∝
p(yt+1|α(i)

t+1)p(α
(i)
t+1|α

(i)
t )

g(αt+1|α(i)
t ,Yt+1)

;

M particles are resampled with probabilities proportional to wi. Notice that SIR arises as a special
case with proposals g(αt+1|αt,Yt+1) = p(αt+1|αt), that ignore yt+1. Merwe et al. (2000) used
the unscented transformation of Julier and Uhlmann (1997) to generate a proposal density. Amisano
and Tristani (2010) obtain the proposal density by a local linearization of the observation and transi-
tion density. Recently, Winschel and Krätzig (2010) proposed a particle filter that obtains the first two
moments of the predictive distributions in (28) by Smolyak Gaussian quadrature use a normal proposal
g(αt+1|αt,yt+1), with mean and variance resulting from a standard updating Kalman filter step (see
section 3.2).

Essential and comprehensive references for the literature on sequential MC are Doucet, de Freitas and
Gordon (2001) and Cappè, Moulines and Rydén (2007). For macroeconomic applications see Fernández-
Villaverde and Rubio Ramı́rez (2007) and the recent survey by Creal (2012). Poyiadjis, Doucet and Singh
(2011) propose sequential MC methods for approximating the score and the information matrix and use
it for recursive and batch parameter estimation of nonlinear state space models.

At each update of the particle filter, the contribution to the likelihood of each observation can be
thus estimated. However, maximum likelihood estimation by quasi-Newton method is unfeasible as the
likelihood is not a continuous function of the parameters. Grid search approaches are only feasible when
the size of the parameter space is small. A pragmatic solution consists of adding the parameters in
the state vector and assigning a random walk evolution with fixed disturbance variance, as in Kitagawa
(1998). In the iterated filtering approach proposed by Ionides, Breto, and King (2006), generalized in
Ionides et al. (2011), the evolution variance is allowed to tend deterministically to zero.

6.5 Observation driven score models

Observation driven models based on the score of the conditional likelihood are a class of models inde-
pendently developed by Harvey and Chakravarty (2008), Harvey (2010) and Creal, Koopman and Lucas
(2011a, 2011b).

The model specification starts with the conditional probability distribution of yt, for t = 1, . . . , n,

p(yt|λt|t−1,Yt−1;θ),

where λt|t−1 is a set of time varying parameters that are fixed at time t− 1, Yt−1 is the information set
up to time t − 1, and θ is a vector of static parameters that enter in the specification of the probability
distribution of yt and in the updating mechanism for λt. The defining feature of these models is that
the dynamics that govern the evolution of the time varying parameters are driven by the score of the
conditional distribution:

λt+1|t = f(λt|t−1,λt−1|t−2, . . . , st, st−1, . . . ,θ)

where

st ∝
∂ℓ(λt|t−1)

∂λt|t−1
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and ℓ(λt|t−1) is the log-likelihood function of λt|t−1. Given that λt is updated through the function
f , maximum likelihood estimation eventually concerns the parameter vector θ. The proportionality
constant linking the score function to st is a matter of choice and may depend on θ and other features of
the distribution, as the following examples show.

The basic GAS(p, q) models (Creal, Koopman and Lucas, 2011) consists in the specification of the
conditional observation density

p(yt|λt|t−1,Yt−1,θ)

along with the generalized autoregressive updating mechanism

λt+1|t = δ +

p∑
i=1

Ai(θ)st−i+1 +

q∑
j=1

Bi(θ)λt−i+1

where δ is a vector of constants and Ai(θ) and Bi(θ) are coefficient matrices and where st is defined
as the standardized score vector, i.e. the score pre-multiplied by the inverse Fisher information matrix
I−1
t|t−1,

st = I−1
t|t−1

∂ℓ(λt|t−1)

∂λt|t−1
.

The recursive equation for λt+1|t can be interpreted as a Gauss-Newton algorithm for estimating λt+1|t
through time.

The first order Beta-t-EGARCH model (Harvey and Chakravarty, 2008) is specified as follows,

p(yt|λt|t−1, Yt−1,θ) ∼ tν(0, e
λt|t−1)

λt+1|t = δ + ϕλt|t−1 + κst

where

st =
(ν + 1)y2t

νeλt|t−1 + y2t
− 1

is the score of the conditional density and θ = (δ, ϕ, κ, ν). It follows from the properties of the Student-t
distribution that the random variable

bt =
st + 1

ν + 1
=

(st + 1)/(νeλt|t−1)

(ν + 1)/(νeλt|t−1)

is distributed like a Beta
(
1
2 ,

ν
2

)
. Based on this property of the score, it is possible to develop full

asymptotic theory for the maximum likelihood estimator of θ (Harvey, 2010). In practice, having fixed
an initial condition such as, for |ϕ| < 1, λ1|0 = δ

1−ϕ , likelihood optimization may be carried out with a
Fisher scoring or Newton-Raphson algorithm.

Notice that observation driven models based on the score have the further interpretation of approx-
imating models for non Gaussian state space models, e.g. the AR(1) plus noise model considered in
section 2.3. The use of the score as a driving mechanism for time varying parameters was originally
introduced by Masreliez (1975) as an approximation of the Kalman filter for treating non Gaussian state
space models. The intuition behind using the score is mainly related to its dependence of the on the
whole distribution of the observations rather than on the first and second moment.
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7 Conclusions

The focus of this chapter was on likelihood inference for time series models that can be represented in
state space. Although we have not touched upon the vast area of Bayesian inference, the state space
methods presented in this chapter are a key ingredient in designing and implementing Markov chain
Monte Carlo sampling schemes.
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