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On the Equivalence of the Weighted Least Squares and
the Generalised Least Squares Estimators, with
Applications to Kernel Smoothing

Alessandra Luati Tommaso Proietti
Dip. Scienze Statistiche S.E.F. e ME. Q.
University of Bologna University of Rome “Tor Vergata”
Abstract

The paper establishes the conditions under which the generalised least squares estima-
tor of the regression parameters is equivalent to the weighted least squares estimator. The
equivalence conditions have interesting applications in local polynomial regression and kernel
smoothing. Specifically, they enable to derive the optimal kernel associated with a particu-
lar covariance structure of the measurement error, where optimality has to be intended in the
Gauss-Markov sense. For local polynomial regression it is shown that there is a class of co-
variance structures, associated with non-invertible moving average processes of given orders
which yield the the Epanechnikov and the Henderson kernels as the optimal kernels.

Keywords: Local polynomial regression; Epanechnikov Kernel; Non-invertible Moving av-
erage processes.



1 Introduction
Consider the linear regression model
y=XB+e, e~N(0X), 1)

wherey € R", X € R"*P, 8 € RP, e € R”, p < n. Throughout the paper we will assume tbat
is a deterministic matrix with full column rank and that the covariance mattixpositive definite
and non singular. We can relax both the assumption of normality and of deterministic regressors
and replace it by the weak exogeneity assumptidaX) = 0, Var(¢|X) = 3.

A well-known result (Aitken theorem, 1935) states thaB:ifs known, the best linear unbiased
estimator (BLUE) of the regression parameters is the generalised least squares estimator (GLSE)

Bars = (X'EZ1X)7IX/'® "y, (2)

Much attention has been devoted in the literature to the search of conditions for which the ordinary
least squares estimator (OLSE),

Bors = (X'X)"' Xy, 3)

is equivalent to the GLSEZ, and thus it is BLUE.

Anderson was the first who faced this problem, stating (1948, p. 48) and proving (1971, pp.
19 and 560) that equality betwed®) @nd ) holds if and only if there arp linear combinations
of the columns ofX that are eigenvectors @E. The relevance of this result is self-evident,
although Anderson’s condition is not easy to verify in practice, i.e. for given matkcasdX..
Later developments in this field concerned the search of equivalent conditions for the OLSE to
be BLUE. A relevant contribution in this sense was that of Zyskind (1967), who derived eight
equivalent conditions, among which the commutativity relation between the covariance matrix
and the orthogonal projection matrix onto the column spa@.acEommutativity is easy to verify
whenX is known. See also Amemiya (1985, pp. 182-183).

Further investigations concerned the search of conditions for the GLSE to be BLUE even
though some hypotheses of Aitken theorem are relaxed, for example Xy are not full
rank (see Zyskind and Martin, 1969; Lowerre, 1974; Baksalary and Kala, 1983). Other ap-
proaches investigated equality oyerKramer, 1980; Jaeger and &ner, 1998) or for varying
X (Watson, 1967; McElroy, 1967, Zyskind, 1969, Baksalary and Van Eijnsbergen, 1988) or in
a coordinate-free setting (Kruskal, 1968; Phillips, 1992). An excellent and exhaustive review of
these results is Puntanen and Styan (1989). Another strand of the literature has considered the
asymptotic equivalence QBOLS andBGLS; well known cases are polynomial and trigonometric
deterministic regression in time series (Grenander and Rosenblatt, 1957), time series regressions
with integrated regressors (Phillips and Park, 1988), ARIMA regressogs (i, 1986), fraction-
ally integrated regressors (&mer and Hassler, 1998).



This paper is concerned instead with establishing the conditions under which there exists a di-
agonal matriXK such that the GLSE is equivalent to the weighted least squares estimator (WLSE)

Bwis = (X'KX) 'X'Ky. (4)

When these conditions are met, the diagonal elemenk§ pfovide the optimal kernel weights
corresponding to a given covariance struct¥revhere optimality is to be intended in the Gauss-
Markov sense.

The interest in this issue arises in the context of local polynomial modelling, where we shall
be able to derive a general class of kernels, isomorphic to noninvertible MA processes, that are
particularly well behaved and that encompasses two very important kernels. It will turn out, in
fact, that the Epanechnikov kernel is the optimal kernel in local polynomial regression with strictly
noninvertible first order moving average errors. Similarly, the Henderson kernel (Henderson, 1916,
see also Loader, 1999) is optimal when the error is a strictly non-invertible third order moving
average process.

The plan of the paper is as follows: the main theorem, establishing the equivalence between
GLSE and WLSE is stated in secti@and proved in the appendix. SectiBreviews local
polynomial regression in a time series setting. It serves to set up the notation for the next section,
which presents the main application of the theorem (se@jpdealing with the optimal kernel
corresponding to a particular covariance structure. A sufficient condition for optimality is given
(section#4.J andl4.2), and a more general result is proved for local polynomial regression with
non invertible moving average errors (secfnin sectiord.2we also provide illustration of this
general result dealing with the Epanechnikov and the Henderson kernel. $atioinesses the
inverse problem of determining the covariance structure corresponding to a given kernel. Section
[4 concludes the paper.

2 Main results

Let us denote b¢ (X) the column space dX, also called its range, and by (X) its null space.
If W € R™" and rankW) = n, thenHy, = X(X’WX)~!X'W is the (oblique) projection
matrix ontoC(X) along N (X'W). The subspaces(X) and N (X'W) are complementary, in
the sense that they have null intersection and their uni®¥ issee Meyer, 2000).

The following theorem states a necessary and sufficient condition for equality beﬁ@@gn

andBy 1.5

Theorem 1 Equality between the GLS estimatfd) and the WLS estimatof) holds if and
only if X = V*M where thep columns ofV* are eigenvectors adEK andM is a non singular
matrix.

The proof is reported in append® The theorem states that if there arknear combinations
of the columns ofX that are eigenvectors &K then the GLSE with covariance matr® is



equal to the WLSE with kerndK. If the conditions of the theorem hold, the equality is true for
ally e R", i.e.
(X' X)Xy = (X'KX) ' XK

from which follows that
X(X'21X)"IX'e7! = X(X'KX) I X'K.

The latter equality states that the projection matrix aif) along NV (X'=7!) is equal to the
projection matrix onte (X) along NV (X'K), i.e. Hy,-1 = Hy. By uniqueness of the projection
and complementarity of the spaces which it acts onto and along, it follows\flE' > ~!) =
N(X’K). This allows to generalise Zyskind (1967) most famous equivalent condition to Ander-
son theorem in the following corollary, whose proof is provided in the appendix.

Corollary 1 A necessary and sufficient condition for equality between the GLS estir@ator (
and the WLS estimatdd) is that > KH = HYXK whereH = Hy -1 = Hg.

For K = I, the identity matrix, we find Zyskind condition for OLSE to be BLUE. The gen-
eralisation is not straightforward, given that Zyskind proof is based on the symmetry okboth
andH;, the orthogonal projection matrix ontgX), that enables to show that the two matrices
have the same eigenvectors and therefore commute. \Ii{hismot the identity or more gener-
ally a scalar matrix, then neith@f nor XK are symmetric and in fact our proof of the corollary,
revolves around the equality betweBIKH and HYXK. In any case, the corollary establishes
that the matrice€K andH commute and therefore have the same eigenvectors. Given that a
complete set of eigenvectors Bf spansR”, the matrixXK can be reduced to a diagonal form
through the same matrix that diagonali¥&sThis provides a further condition to verify if equality
holds betweerd) and @).

Typically, the design matriX and eithe® or K are known. The first use of the above results
is to obtain the diagonal matriK from the pairX, 3, as the optimal kernel that yields the best
linear unbiased predictor gf given X, assuming the covariance struct@e For this purpose,
we need to be able to determine the malvixof theorem 1. This is achieved in the next section,
which deals with local polynomial regression with equally spaced design points, for which the
matrix M has a very specialised structure.

3 Local polynomial regression

The leading case of interest for the application of the above results is local polynomial regression

in a time series setting. Essential references are Fan and Gjibels (1996) and Loader (1999). Let
us assume tha is a time series, measured at discrete and equally spaced time points, that can be
decomposed ag = i + £, wherey, is the signal (trend) angi ~ NID(0, o2) is the noise. The

signal is approximated locally by a polynomial of degteeo that in the neighbourhood of time



t we can write

Yirj = Mypj + vy Mayj = Bo+ Puj + Boj® + -+ + Bajj = 0,£1, -+, £h.

In matrix notation, the local polynomial approximation can be written as follows:

y=XB+e, €~N(0%), (5)
wherey = [yi—pn, -, yt, - ,Z/t+h]/, €= [Et—hy " 1€t 7€t+h]/,

1 —h h? : (—h)?

1 —(h=1) (h-1)° i [~(h—1)9

. ) . Bo
B

X=11 0 0 0 s B=1. |

Ba

1 h-1 (h—1)2% (h —1)4

i 1 h h? : hd |

andX = {O‘ij,i,j =—h,..., h}

Using this design, the value of the trend at tifms simply given by the interceptp, = fo.
Provided thakh > d, thed + 1 unknown coefficient®, k = 0, ..., d, can be estimated by the
method of generalised least squares, givihg 5 = (X’S7'X)"!X’'S~y. In order to obtain
e = 3, we need to select the first element of the ve@gy s. Hence, denoting by, thed + 1
vectore; = [1,0,...,0],

h
My = €1Bgrs = |(X'STIX)TIX'E ly = wy = Z W;Yt—j,
j=—h
which expresses the estimate of the trend as a linear combination of the observations with coeffi-

cients
w =321 X(X'Z7!X) e;. (6)

We notice in passing that expressi@) ¢an be equivalently derived as the solution of the con-
strained minimisation problem:

min{w’'Xw} subject tow'X = €],
w

where the linear constraints’X = € enforce the condition that the trend estimate reproduces a
polynomial of degred (i.e. if y = X3, m; = w'y = 3y). See Hannan (1970, p. 186-187), and
Wallis (1983).



Estimates of3 can be also obtained by the method of weighted least squares, which consists
of minimising with respect to thg,'s the objective function:

h

S(Bos---,Bq) = Z Kj (yt+j —Bo— i — Baj® = — ijd>2,

j=—h

wherex; > 0 is a set of weights that define, either explicitly or implicitly, a kernel function.
In general, kernels are chosen to be symmetric and non increasing functignsnodrder to
weight the observations differently according to their distance from tinie particular, larger
weight may be assigned to the observations that are cloge®® a result, the influence of each
individual observation is controlled not only by the bandwidithut also by the kernel. In matrix
notation, settind = diag(k_p, ..., k1, Ko, K1, - - - , K1), the WLS estimate of the coefficients
is By s = (X’KX) 'X'Ky and the elements of the vecter = KX (X'KX)~le; constitute
the so called equivalent kernel. Note that the notatiors used both for the GLS coefficients
(€ and for the equivalent kernel arising from WLS estimation, since we will mainly focus on the
case when their elements are identical. If this should not be the case, then which one of the two
meanings is to be intended will be clear from the context.

4 The optimal kernel in local polynomial regression

We address the question of the equivalence of the GLSE and the WLSE in the local polynomial
regression problem described above. When the conditions of theorem 1 are satisfied, we shall
refer to the diagonal elements Kf as the optimal kernel weights. We stress that here optimality

is in the Gauss-Markov sense and expresses the fact that Ksisgequivalent to usingz for
computing the optimal estimate of the signal and its time derivatives.

The conditions under which the equivalence holds are typically difficult to check, but in the
local polynomial regression framework considered in the previous section, the particular structure
of the design matrix, and consequently of the maivixof theorem 1, leads to a considerable
simplification.

The matrix(M can be chosen as upper triangular with further zeros along the secondary, fourth,
and so on, (upper) diagonals. This follows from the algebraic structul¢KiX and X'~ X.

In fact, X’KX is a Hankel matrix whose elements are the valfgs= Z?:_h Jj Ky, forr =
0,1,...,2d, from Sy to S, in the first row and fromS; to S, in the last column. Note that for
symmetric kernel weights satisfying; = x_;, S, = 0 for oddr and therefor&X’KX has null
elements along the secondary, fourth, and so on, diagonals. The ARix' X has not Hankel
structure but has zeros along the secondary, fourth, and so forth diagonals as well, which stems
from the fact that the covariance matrix of a stationary stochastic process is a symmetric Toeplitz
matrix. lllustrations will be provided in sectid

Now, M is such thaBE KXM~! = XM~!'D, whereD is a diagonal matrix (see Appendix A),
or, equivalently,E*lXM—lD = KXM™!. As a result, the linear combinations of the columns



of X yielding the requireg eigenvectors oEK, are provided byX M ~!. This gives an operative
procedure to geK by 3, formalised ind + 1 conditions that directly follow by the sparse upper
triangular structure aM. In sectiorfflwe shall provide explicit conditions in terms of the generic
elements o= ~! and ofK for d < 3, which are the most frequently encountered degrees for the
fitting polynomial.

First and foremost, a very simple and easily checked necessary condition arises in a regression
framework with an intercept, i.e. when the first columnXfis the vector of ones, denoted
i=1[1,1,...,1]". This will be discussed below in sectidnl

4.1 Local constant regression and a simple necessary condition

When the degree of the fitting polynomial is equal to z&o>= i andM is a scalar, so that the
necessary and sufficient condition tatand>: must satisfy for the WLSE to equal to the GLSE
reduces t&~'i = Ki. Denoting bys;; the generic element &', fori,j=—h,...,0,...,h,

the unnormalised kernel weights are equal to the row sums of the elements of the inverse covari-
ance matrix, that is

h
Kj = Z Sijs fij = —h, ...,h.
i=—h
In the more general case, the first column of the maXriis the vectoi, and the matriXM is
upper triangular; hence, the first columnXfis itself an eigenvector adEK corresponding to an
eigenvalue, sayji, so thatXKi = d;i. It therefore follows that a necessary condition Korto
satisfy theorem 1 is that, up to the factfr,

Kix 271 (7)

which means that the elements Kf are (proportional to) the sum of the row elements of the
inverse covariance matriX—!. As pointed out above, for local constant estimators belonging

to the Nadaraya (1964) and Watson (1964) class, the condition is also sufficient. Hence, in the
general case we suggest the following strategy:

e derive a candidate kernel from the necessary conditien X ~'i;
o verify that the other conditions are met.

Obviously, for spherical error&; = ¢°I, the candidate kernel is the uniform kernel. Whgn
is the first order autoregressive process, or AR{L}r ¢e; 1 + &, & ~ WN(0, 02), where WN
denotes a white noise process,

Fipp =1 —¢,r5 = (1=9)%j = 0,£1,...,£(h = 1),

so that the kernel will be admissible, the weights will be non increasing withf —1 < ¢ < 0.
This example has been used in the literature to illustrate the asymptotic equivalence of OLS and
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Figure 1: Plot of the kernel weights associated to the covariance matrix of the)AROcess
(1+0.64B)Pey = &, forp=1,...,6 andh = 6.

GLS for polynomial trend estimation. As a matter of fact, wheagoes to infinity, the kernel tends
to the uniform kernel. It; = g1, 1 + docr_1 + &, & ~ WN(0, 02),

K = 1= 61— o, ko1 = (1—d1)* — 92 (2— ¢1), 5 = (1 — 1 — ¢2)?,j = 0, +1, £(h —2).

The kernel will be admissible only for some parameter combinations. In generak-ifAR(p),
the central weights foj| < h — p will be constant. Figur@l displays the kernel associated to the
AR(p) procesg1 + 0.64B)Pe; = &, whereB is the backshift operator such thafz; = z;_y,
forp =1,...,6, andh = 6. The proces$l — ¢B)Ps, = £ with a positive¢ does not yield an
admissible kernel, a8 ~'i has negative elements.

4.2 Non-invertible moving average models

An important class of candidate kernels, nesting the Epanechnikov and the Henderson kernels,
arises in the local polynomial regression framework, when the efrisr generated by the non-
invertible moving average (MA) process of order

& = (1 - B)q‘fta & ~ WN(0702)' (8)

From the interpretative standpoiri) (s the roughest stationary M4 process, since its spectral
density hagy unit poles at the zero frequency and increases monotonically from 0 to the Nyquist

7



frequency. As a consequence, postulating this model amounts to impose a smoothness prior on
the signal estimates.
Let us denote by, the covariance matrix of the proce&.( This is the symmetri@h +
1-banded Toeplitz matrix, with the coefficients associated it the binomial expansion of
(1 — B)?4, displayed symmetrically about the diagonal in each row and column. For instance,

2 —1 0 0 6 —4 1 0 0
-1 2 0 0 -4 6 —4 0 0
0 —1 0 0 1 —4 6 0 0
¥ = , o =
2 —1 : 6 —4
0 0 0 -1 2 0 0 0 -4 6

For determining the candidate kernel by the necessary con(mgdﬁ, we use a result due to
Hoskins and Ponzo (1972), according to which ke row sumEq‘li is

h
Z Sq,ij =

i=—h

(h-l-g-f—q) (h—g+q)

2 )
()
where we have adapted Theorem 3, p. 396, of Hoskins and Ponzo (1972) to our notation and
corrected a minor mistake concerning the sign. Hence,

j=—h,..h,

St = _1_(htj+a)! (h=j+q)! _
i=—h >0t (2{1! (h+i)! (h=3)!
= Goilht1+5)(h+2+7) ... (h+q+i)(h+1-j)(h+2=j)...(h+q—])

el +1)2 = 32 [(h + )% — 57

= lqu.
In conclusion, the candidate kernel satisfykg= 2;1i has weights
figg o< [(h+1)2 = 2[(h +2)* = 7. [(h + q)” = 57, 9)

forj =—h,..., h.
Wheng = 1, & = (1 — B)& andk is the Epanechnikov (1969) kernel, with elements
k1,5 o< [(h+ 1)? — j2], or, equivalently,

. 2
PRV N
Li =y h+1

The Epanechnikov kernel minimises the asymptotic mean integrated square error (see Priestley
and Chao, 1972, and Benedetti, 1977) and the efficiency of any kernel estimator is generally
measured with respect to it (see Wand and Jones, 1995).

= —h,..,h.
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Figure 2: Plot of the normalised kernel weights associated to the covariance matrix of the non-
invertible MA(q) process; = (1 — B)4&, forg =1,...,6 andh = 10.

Also another popular kernel, the Henderson kernel (Henderson, 1916) is ne&@gdaits{ng
wheng = 3:
igg o [(h+1)* = j2I[(h +2)* = j7][(h + 3)* — 5. (10)

The Henderson filter (see Henderson, 1916, Kenny and Durbin, 1982, Loader, 1999, Ladiray and
Quenneville, 2001) arises as the weighted least squares estimator of a local cubic trend at time
using2h + 1 consecutive observations. The filter has a long tradition for trend-cycle estimation
in economic time series. The relevance of Henderson’s contribution to modern local regression
is stressed in Loader (1999). Currently, the Henderson filters are employed for trend estimation
in the X-12-ARIMA procedure, the official seasonal adjustment procedure in the U.S., Canada,
the U.K. and many other countries. See Dagum (1980), Finell@l. (1998) and Ladiray and
Quenneville (2001) for more details.

Henderson (1916) addressed the problem of defining a set of kernel weights that maximise the
smoothness of the estimated local cubic trend, in the sense that the variance of its third differences
is as small as possible. In local cubic regression, Witk 3, the GLSE of the trend when the
covariance matrixs is the symmetric Toeplitz matrix with nonzero elememis= 20, 0; ;41 =
Oii—1 = —15, Oii4+2 = 04—2 = 6, 0ii4+3 = 04i—3 = —1,is equivalent to the WLSE obtained
using the kerne(d0).

Hannan (1970, p. 186-187), and Wallis (1983) observed this equivalence by referring to



the derivation of the Henderson filter as the solution of the constrained minimisation problem:
min,, {w'X3w} subject tow’X = €], where the linear constraints enforce the condition that the
trend estimate reproduces a cubic polynomial. In the next section we prove a more general result
that encompasses this equivalence. Notice also that in our approach, the Henderson kernel need
not be associated to local cubic polynomial estimation, as it can be defined for any vadlue of

5 Local polynomial regression and higher order conditions

This section discusses whether the candidate kernel satisfies the additional equivalence conditions.
It will turn out, for instance, that wheK is a polynomial of orded > 1, the kernel derived above

for the AR{) process(1 — ¢B)Pe; = & does not satisfy the other conditions. On the other
hand, these conditions are automatically satisfied by the candidate kernels arising from the strictly
non-invertible MA process, = (1 — B)%¢,, as itis stated in the following proposition.

Proposition 1 The kernel®) is optimal for the non-invertible MA(q) proce&) (

The proof, provided in the appendix, is based on the fact that the covariance matrix of the
non-invertible MAg) process[@) is associated with the finite difference operator of ordlgr
A% A = (1 — B), subject to null boundary conditions. At the same time, the m&jxwhich
is the diagonal matrix with diagonal elements given by the candidate kE)nékis elements that
lie on a polynomial of the same ord€g. In the local polynomial regression setting considered
so far, the convolution of these operators act onto symmetric or skew-symmetric vectors, such as
the columns ofX, leaving unchanged their symmetric and polynomial structure. As a result the
column space oE,K,X coincides with that oX.

5.1 Local linear regression

Whend = 1, then, following the considerations in sectidnX’>~'X andX’KX are diagonal,
and so is the matrid satisfyingZ XM D = KXM~!. It therefore follows that necessary
and sufficient conditions foB;; s = By areX~'x, o Kx, for r = 1,2, wherex, denotes
ther-th column of theX matrix, i.e.

h

h
> Gjocky Y sy o< gy, §=—h,.h (11)
i=—h i=—h

Alternatively, using the matrix equatio KX = XM ~'DM, which for this case reduce to
YKX = XD, D = diag(d;, d2), and writing® = {0;;}, the necessary and sufficient conditions
become

h h
Z OijRi = dl, Z idijlii = dgj, ] = —h, ceny h. (12)
i=—h i=—h

10



It is straightforward to see that the candidate kernels derived for the AR(p) process do not
satisfy the above conditions. On the other hafid) ¢an be verified using the expressionsgf
in Lemma 5, p. 397, of Hoskins and Ponzo (1972), whei@@sdan be verified either directly or
using Theorem 1, p. 394, of Hoskins and Ponzo (1972).

5.2 Local quadratic regression

In the casel = 2, the expressions favl and its inverse are:

mi1 0 mi3 m(ll) 0 m(15)
M=| 0 mep 0 |, M!= 0 m®® 0
0 0  mgs3 0 0 mBd

and, therefore, the following further condition, beside¥) @nd [L2), is required:

h
1 (13)
Z i2§ij A 2+ o (1 — d3>] kj forj=—h,... h. (13)

= 3 m(33) dy

In the first order moving average case it is convenient to work REKX = XM~'DM. The
first two conditions are as before, and the third can be written as the difference equation:

m(13) 5
Kj+1 + Kj—1 = —W(dg — dl) + (dg +di — 2d2)j . (14)

It is immediate to check thadfld) holds for the Epanechnikov kernel and the higher order kernels

©.

5.3 Local cubic regression: the Henderson filters

In the casel = 3,
mi1 0 mi3 0 m(ll) 0 m(lg) 0
(22) (24)
M — 0 mo 0  my Ml 0 m O33 m
0 0 m33 O 0 0 mB 0
0 0 0 1y 0 0 0 mHd

so that a fourth condition besid€El, (12) and [L3) has to be satisfied, which involves odd powers
of 7,
h
1 m(24) d
B — — |43 N ) N
‘Z_:hz Gij = i [j + —ery <1 d2> j] kj forj=—h,.. h,

where the proportionality constantdg L
In terms of the difference equatiddKXM ! = XM~!'D, wheng, is a first order moving
average error term, the conditions that a kernel has to satisfy are the following:

11



— Kj-1+ 2/€j — Kj+1 = dq, (15)

Kj—1 — Kjr1 = j(d2 — dy), (16)
m(13) \
Kj—1+ Kjt1 = —m(dg —d1) + (d3 + di — 2d3)j*, (17)
5 [m®9 m(13)
(d1—3d2—|—d3—d4)j =7 7(d4—d2)—(dg—dl)—:’)i”(dg—dl) . (18)
) 7 (33)

Note that for a strictly non-invertible MA procesf.8] is always satisfied by the Epanechnikov
(24) (13)

kernel, given that botl; — 3ds + d3 — d4 and%(d;l —dg) — (dg — dy) — 3%(@ —dj) are
null quantities.

6 Kernel smoothing

In this section we consider the inverse problem of reconstructing, if there exists, a covariance
structure (i.e. some stochastic process) for which a given kernel estimator is BLUE. Hence, the
starting point of this section is a set of kernel weights. With respect to local polynomial regression,
that has a long tradition for smoothing time series (see Macaulay, 1931), kernel estimators for the
fixed design regression problef§) (@re of more recent origin (Priestley and Chao, 1972). The
equivalence between the two methods has been exploredibgr\i1987), who pointed out how
kernel estimation is a particular case of local polynomial regression where locally weighted aver-
aging is performed instead of locally weighted regression and kernel weights are given explicitly
asw = “j(zgl:_h ki)

Writing, as beforex = [kp, ..., k1, Ko, K1, - - - , k1), the vector containing the elements of a
given symmetric and positive kernel with associated diagonal mKtrip to some constant, we
can express conditioffl( as follows:

Yk =1. (29)

We assume thd@ represents the covariance structure of a stationary stochastic process, and there-
fore that it is a symmetric, positive definite and Toeplitz matrix completely characterised by its
first row or column elements, collected in the veator= (011,012, 013, ..., 01 2n41)". Hence,[[9)
can be written as

Ko =i (20)

12



where

Kp Khp—1 ... Kp-1 RKRp
Kh—1 Kp+ Kp—2 ... Kh 0
K= R0 2,‘{1 cee 0 0
Kh—1 Kh+ Kh—2 ... Kh 0
L Kh Khp—1 -« Rp—1 Kp |

It is evident that the linear systefid) is redundant: the lagt rows of the complete matri}Cli]
can be deleted thus giving rise to a system gf 1 equations ireh + 1 unknown variables, let us
denote it byKCTo = if, where the symbol indicates that only the firgt + 1 rows of IC andi are
selected. As long as the rank &f' is equal to that of/C' |if], the system admits infinite solutions
depending on the values assumedibsariables, namely 12,01 443, - - -, 01,2n+1. Choices for
the latter values that restitute a unique solution can be obtained by setting all the free variables
equal to zero or by selecting the minimum norm solution which is the orthogonal projection onto
the row space oK!. These are not always amenable choices, since they may lead to non positive
definite or singular covariance matrices.

Whenh = 1, explicitly solving 20) gives a symmetric Toeplitz matrix whose first row or
column elements, depending on any value gf, are:

-1 -1
11 = ’%O — 2%1/4:0 012
o12 = (ko — kok1o13 — K1) (K — 2K3) 71 (21)
o013 = free parameter.

Whenh > 1, analytic solutions become rather complicate to calculate. Anyway, exact numeri-
cal solutions may be found by solving the linear syst@fi) (ising scale reduction algorithms. For
example, take th@R decomposition ofCt and then back-sovBo = Q'i'.

Admissible solutions exist foh > 1 when the Epanechnikov, the biweight or the tricube
kernels are chosen. The latter arise for values @fual to2 and3, respectively, in the following
equation

. S\ S
. _|J P
Kj o <1 1 ) , J hy...,h. (22)

and are the suggested weighting functions in the robust locally weighted regression method (loess)
developed by Cleveland (1979).

On the other hand, not all the kernels are optimal for some stochastic process. An example is
the Gaussian kernel, whose weights are

1/5\?
f@jocexp{—Q <Z> }, j=—=h,...,h,

where theb > 0 is the smoothing parameter determining the bandwidth. The Gaussian kernel
arises as the probability density function of the infinite sum of independent rectangular random
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variables, and is largely applied for density estimation. Despite its popularity,$ot there does

not exist any value of13 such that the resulting is positive definite and our numerical analysis
seems to reveal that no admissible covariance structures may be derived for larger bandwidths. In
other words, our empirical evidence induces to conclude that there does not exist any stochastic
process for which the Gaussian kernel is BLUE. The same occurs with the triweight kernel

B (Y
D ht1
and with the triangle kernel arising when= 0 in (22). Note that wherh is large, the weights
of the polynomial kerneld0), giving the Henderson filters, become approximately proportional
those of the triweight kernel (see Loader, 1999, Ex. 1.6, afitley) 1984). When is not too

large, the approximation is not sensible and boundary conditions make the difference between the
two estimators, even with respect to their Gauss-Markov optimality.

3
 j=—h,..,h

7 Conclusions

The paper has proven a general result establishing the conditions under which generalised least
squares estimation is equivalent to weighted least squares estimation. The result has relevant
implications for kernel smoothing in local polynomial framework. In particular it allowed to
derive a class of polynomial kernels that are isomorphic to covariance structures associated to non
invertible moving average processes for the errors, that encompass well known kernels such as
Epanechnikov and the Henderson kernel.
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A Proofs of the main results

In this section, we provide the proofs of Theorem 1, Corollary 1 and Proposition 1. The proof

of Theorem 1 requires a result concerning the simultaneous diagonalisation of two symmetric
positive definite matrices (Lemma 1), which is a particular case of a well known result (see Magnus
and Neudecker, 2007, Theorem 23, p. 23).

Lemma 1 Let A and B be symmetric and positive definite matrices of the same order. Then, a
non singular matrixC and a positive definite diagonal matX exist, such tha€C’AC = I and
C'BC = D wherel is the identity matrix.

Proof Since A is symmetric and positive definite, it can be factoriseddas- (E~')’E~! (e.g.
by a Cholesky decomposition) so tHBtAE = I. Let denote byQ the orthogonal matrix that
diagonaliseE£'BE, i.e. Q E'BEQ = D. SettingC = EQ one get«C'BC = D andC’'AC =
I. Note that the elements @ are the eigenvalues &f BE corresponding to the eigenvect@sas
well as the eigenvalues &' B corresponding to the eigenvectds given thatC~'A~'BC =
D, as follows byA~! = EE'R

The proof of Theorem 1 is divided into two parts. We first prove iat V*M, whereV*
is a matrix whose columns contagineigenvectors oBEK, andM is nonsingular, is a sufficient
condition forB,;5 = By g and then that the equivalen@g,; ¢ = By 1. implies that we can
expressX = V*M (necessity).

Proof of Theorem 1. (Sufficiency).et us assume th& = V*M whereV* contains, as columns,
p eigenvectors oEK andM is a non singular matrix. The condition &1 can be formalised as

follows,
(ZEK)V* = V*A"

whereA* is diagonal and its elements are the eigenvalu&sl§fcorresponding to the eigenvectors
that are columns oV *. Equivalently,

v¥e Tl = A VYK
from which follows that

Bars = (X'T'X)TIX'Zly =
= (M V* STIVEM) T IM VY Ry
(M/A*'WV¥KV*M)'M/A* ' V¥ Ky
/ -1 /
M/A* lMl 1)(Mlv* )K(V*M)) (M/A*_lM,71)<M/V* )Ky

( Y
. (MV* VM) (M'V)K
(X'KX) "1 X'Ky

B

WLS-
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(Necessity The equality between the WLSH)(and the GLSEZ) implies
KX(X'KX)! =2 IxX(X'="1x)!,

or, equivalently,
KX = X(X'Z71X) " HX'KX). (23)

SinceX’'S~'X andX’KX are positive definite and symmetric, by Lemma 1, there exists a non
singular matrixC such thatC’(X’S7'X)C = I, andC'(X'KX)C = D, whereD is a diagonal
matrix containing the eigenvalues (X'~ ~'X)~!(X’KX) corresponding to the (eigenvectors)
columns ofC. Hence, replacingX'="'X)~(X’KX) = CDC™ ! into (23, givesXKX =
XCDC !, or

(ZK)XC = (XC)D.

The latter equality tells that the columns of XC are eigenvectors cEK with corresponding
eigenvalues given bIp. SettingXC = V* andM = C~! proves the theoreill

Proof of Corollary 1. If Theorem 1 holds, thet¥K)XC = (XC)D. Pre-multiplying both
members of the latter equation B and reminding thaHX = X the result is

(HXK)XC = HXCD = (XC)D.
On the other hand, let us consider the ma¥iKH. It is evident that
(¥ KH)XC = ¥KXC = (XC)D.

Up to now we have proved that if theorem 1 holds, tEEBK andXKH sharep eigenvectors (the
same of¥K that are linear combinations of the columnsXf associated to equal eigenvalues.

If we show thatHYX K andXKH also share otheh — p independent eigenvectors associated to
equal eigenvalues we have proved that the two matrices are equal. To do that, remind by section
2 thatH is the (oblique) projection matrix ont®(X) along V' (X’S~1) (see Meyer, 2000, pag.
634), or equivalently alongy’ (X'K), since the projector is unique. Therefdies diagonalisable

and hag eigenvectors irC(X) associated to eigenvalues equal to one and p eigenvectors

in M(X'E71) or M(X'K) associated to null eigenvalues. As such, the latter eigenvectors are
all thosez € R” such thatX'Y"!'z = X’Kz = Q. The samez are eigenvectors dHXK

and XKH associated to zero eigenvalues as well. In faet,e N(X'K),XKHz = 0 and
HYKz = X(X'Z1X)"1X'Kz = Q.

Onthe other hand, Hy,-1 XK = SKH, thenX(X'S7!X) ' X'K = TKX(X'’KX) 'X'K
and pre-multiplying by&~! and post-multiplying byK —* one obtain& !X (X'E"1X)"1X’ =
KX(X'KX) X' thatisH},_, = H/,, implying equality of the WLSE obtained with kernkl
and the GLSE with covariance matzil
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Proof of Proposition 1. Let us define the matriX* € R2(\+a)+)x(d+1) (o < ¢ < 2h, as the
local polynomial regression design matrix wifh4- 1 columns and bandwidth* = h + ¢ (see
sectiorid). The element in théh* + j + 1) — th row andr-th columns, ig" 1, j = —h*,... h*,
r=1,...,d+ 1.

Let alsox; € R(2h+1Dx(2h"+1) denote the matrix formed from the cent2al + 1 rows of the
(2h*+1) dimensional covariance matrix of the noninvertible MAgrocess; = (1—B)%;, & ~
WN(0,1),t = —h*,..., h*, where, for instance,

—1 2 -1 0o ... 0 0
o -1 2 -1 " 0 0
3] =
o - .. -1 2 -1 0
0 - - 0 -1 2 -1

Notice that33, can be obtained fror&; by deleting the first and lagtcolumns.

The matrixX} is associated with the difference operator— B)?4 subject to null boundary
conditions. Specificallyy; acts onto any polynomial vector of degré®y lowering its order to
d — 2q and by annihilating its first and lagtcomponents. Hence, far < 2¢, 37 X7 = 0, where
0iis the null matrix inR(h+1x(4+1) or, equivalentlyC(X*) C NV(X}).

As the elements of each of the rows of the matrix are the coefficientsinfthe expansion
of (1 — B)%4, we can define a vecter;, whose elements lie on a polynomial of degiee: 2¢,
subject to suitable boundary conditions, such fgk; o i. In particular, the vectok; has to
satisfy the following properties:

(p1) the elements ok; are non negative and describe a polynomial of ogiemn j, denoted
UQ(j)v forj = 7(h + Q)7 —h— (q - 1)’ ceey h + q,

(p2) the polynomial is null foyj = h+1,h+2,...,h+gandj = —(h+1), —(h+2), ..., —(h+q).

The property (p2) gives exactdy roots ofv,(j). The latter can be therefore factorised as follows:

ve(j) = [(h+1) =Jll(h+2) —j]--- [(h+q) = jll(h + 1) + j][(h +2) + j]...[(h + q) + ]
= [(h+1)?=5(h+22 = )] [(h+@)* = j°].

When combined, (p1) and (p2) give the symmetric kemgj), so thatk; = (O’q, Ky, 0;)’ is the
vector of kernel weights:, extended by inserting zeros before and after.
Let us now define the matriX; which has the vectok; on the main diagonal and zero
elements elsewhere. Hence,
0
Kq
0

K, =

o O O
o O o
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The matrix3; K7 has row elements that are the coefficients of the convolutions of the polynomial
ve(4), with the difference operatdil — B)*. When applied taX*, the operatod; K7 leaves
unchanged (up to a linear transformation) the degree and the structure of the coluXiharad
annihilates the first and lagtelements. In other words, since the columnXd&fare symmetric or
skew-symmetric vectors defining a polynomial basis, premultiplication by mafji; which is
the product of a matrix which annihilates a polynomial of de@and which raises the degree
of a polynomial term by2¢, yields a compensating effect, so tt}K;X* C C(X) or, more
generally,

T,(C(X*)) € C(X). (24)

whereT, is the linear operator associated WHIJK7, i.e. T,(x) = 37 K;x, andT,(C(X*)) =
{Ty(x),x € C(X")}.
Now, direct multiplication shows that,

KX = 2K X, (25)
and combiningiZ4) with (29 gives
T(C(X)) C C(X) (26)

whereT(C(X)) = {£,K,x,x € C(X)}, i.e. C(X) is an invariant subspace &**! underT

(see Meyer, 2000, pag. 259). SifféC (X)) andC(X) have the same dimension, equalite 1,

equality holds in[26). It follows that there exist + 1 linearly independent vectots, co, ..., €411

such thaty ;K ,Xc; = Xc;d; for some coefficientd;, : = 1,2,...,d + 1. In matrix notation,
settingC = [cy, ¢, ..., cq4+1] @andD = diag{d;, da, ..., d4+1 }, the above relation becomes

»,K,XC = XCD.

Hence, we have proved that there exist 1 linear combinations of the columns &f that are
eigenvectors o K, i.e. the kernel) is optimal in the Gauss-Markov sense for the non-
invertible MA(q) process(§).

Equivalently one could have noted that equati@® (mplies thatC(X) C N (XK —dI), where
d is any eigenvalue cEK (see Meyer, 2000, pag. 265). Since the dimensiafy(3f) is equal to
d + 1, the above relation establishes that there ekistl linear combinations of the columns of
X that are eigenvectors &, K,
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