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Abstract

The paper establishes the conditions under which the generalised least squares estima-
tor of the regression parameters is equivalent to the weighted least squares estimator. The
equivalence conditions have interesting applications in local polynomial regression and kernel
smoothing. Specifically, they enable to derive the optimal kernel associated with a particu-
lar covariance structure of the measurement error, where optimality has to be intended in the
Gauss-Markov sense. For local polynomial regression it is shown that there is a class of co-
variance structures, associated with non-invertible moving average processes of given orders
which yield the the Epanechnikov and the Henderson kernels as the optimal kernels.

Keywords: Local polynomial regression; Epanechnikov Kernel; Non-invertible Moving av-
erage processes.



1 Introduction

Consider the linear regression model

y = Xβ + ε, ε ∼ N(0,Σ), (1)

wherey ∈ Rn, X ∈ Rn×p, β ∈ Rp, ε ∈ Rn, p < n. Throughout the paper we will assume thatX
is a deterministic matrix with full column rank and that the covariance matrixΣ is positive definite
and non singular. We can relax both the assumption of normality and of deterministic regressors
and replace it by the weak exogeneity assumption, E(ε|X) = 0, Var(ε|X) = Σ.

A well-known result (Aitken theorem, 1935) states that, ifΣ is known, the best linear unbiased
estimator (BLUE) of the regression parameters is the generalised least squares estimator (GLSE)

β̂GLS = (X′Σ−1X)−1X′Σ−1y. (2)

Much attention has been devoted in the literature to the search of conditions for which the ordinary
least squares estimator (OLSE),

β̂OLS = (X′X)−1X′y, (3)

is equivalent to the GLSE (2), and thus it is BLUE.
Anderson was the first who faced this problem, stating (1948, p. 48) and proving (1971, pp.

19 and 560) that equality between (2) and (3) holds if and only if there arep linear combinations
of the columns ofX that are eigenvectors ofΣ. The relevance of this result is self-evident,
although Anderson’s condition is not easy to verify in practice, i.e. for given matricesX andΣ.
Later developments in this field concerned the search of equivalent conditions for the OLSE to
be BLUE. A relevant contribution in this sense was that of Zyskind (1967), who derived eight
equivalent conditions, among which the commutativity relation between the covariance matrix
and the orthogonal projection matrix onto the column space ofX. Commutativity is easy to verify
whenΣ is known. See also Amemiya (1985, pp. 182-183).

Further investigations concerned the search of conditions for the GLSE to be BLUE even
though some hypotheses of Aitken theorem are relaxed, for example whenX or Σ are not full
rank (see Zyskind and Martin, 1969; Lowerre, 1974; Baksalary and Kala, 1983). Other ap-
proaches investigated equality overy (Krämer, 1980; Jaeger and Krämer, 1998) or for varying
X (Watson, 1967; McElroy, 1967, Zyskind, 1969, Baksalary and Van Eijnsbergen, 1988) or in
a coordinate-free setting (Kruskal, 1968; Phillips, 1992). An excellent and exhaustive review of
these results is Puntanen and Styan (1989). Another strand of the literature has considered the
asymptotic equivalence of̂βOLS andβ̂GLS ; well known cases are polynomial and trigonometric
deterministic regression in time series (Grenander and Rosenblatt, 1957), time series regressions
with integrated regressors (Phillips and Park, 1988), ARIMA regressors (Krämer, 1986), fraction-
ally integrated regressors (Krämer and Hassler, 1998).
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This paper is concerned instead with establishing the conditions under which there exists a di-
agonal matrixK such that the GLSE is equivalent to the weighted least squares estimator (WLSE)

β̂WLS = (X′KX)−1X′Ky. (4)

When these conditions are met, the diagonal elements ofK provide the optimal kernel weights
corresponding to a given covariance structureΣ, where optimality is to be intended in the Gauss-
Markov sense.

The interest in this issue arises in the context of local polynomial modelling, where we shall
be able to derive a general class of kernels, isomorphic to noninvertible MA processes, that are
particularly well behaved and that encompasses two very important kernels. It will turn out, in
fact, that the Epanechnikov kernel is the optimal kernel in local polynomial regression with strictly
noninvertible first order moving average errors. Similarly, the Henderson kernel (Henderson, 1916,
see also Loader, 1999) is optimal when the error is a strictly non-invertible third order moving
average process.

The plan of the paper is as follows: the main theorem, establishing the equivalence between
GLSE and WLSE is stated in section2 and proved in the appendix. Section3 reviews local
polynomial regression in a time series setting. It serves to set up the notation for the next section,
which presents the main application of the theorem (section4), dealing with the optimal kernel
corresponding to a particular covariance structure. A sufficient condition for optimality is given
(sections4.1 and4.2), and a more general result is proved for local polynomial regression with
non invertible moving average errors (section5). In section4.2we also provide illustration of this
general result dealing with the Epanechnikov and the Henderson kernel. Section6 addresses the
inverse problem of determining the covariance structure corresponding to a given kernel. Section
7 concludes the paper.

2 Main results

Let us denote byC(X) the column space ofX, also called its range, and byN (X) its null space.
If W ∈ Rn×n and rank(W) = n, thenHW = X(X′WX)−1X′W is the (oblique) projection
matrix ontoC(X) alongN (X′W). The subspacesC(X) andN (X′W) are complementary, in
the sense that they have null intersection and their union isRn (see Meyer, 2000).

The following theorem states a necessary and sufficient condition for equality betweenβ̂GLS

andβ̂WLS .

Theorem 1 Equality between the GLS estimator (2) and the WLS estimator (4) holds if and
only if X = V∗M where thep columns ofV∗ are eigenvectors ofΣK andM is a non singular
matrix.

The proof is reported in appendixA. The theorem states that if there arep linear combinations
of the columns ofX that are eigenvectors ofΣK then the GLSE with covariance matrixΣ is
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equal to the WLSE with kernelK. If the conditions of the theorem hold, the equality is true for
all y ∈ Rn, i.e.

(X′Σ−1X)−1X′Σ−1 = (X′KX)−1X′K

from which follows that

X(X′Σ−1X)−1X′Σ−1 = X(X′KX)−1X′K.

The latter equality states that the projection matrix ontoC(X) alongN (X′Σ−1) is equal to the
projection matrix ontoC(X) alongN (X′K), i.e. HΣ−1 = HK . By uniqueness of the projection
and complementarity of the spaces which it acts onto and along, it follows thatN (X′Σ−1) ≡
N (X′K). This allows to generalise Zyskind (1967) most famous equivalent condition to Ander-
son theorem in the following corollary, whose proof is provided in the appendix.

Corollary 1 A necessary and sufficient condition for equality between the GLS estimator (2)
and the WLS estimator (4) is thatΣKH = HΣK whereH = HΣ−1 = HK .

For K = I, the identity matrix, we find Zyskind condition for OLSE to be BLUE. The gen-
eralisation is not straightforward, given that Zyskind proof is based on the symmetry of bothΣ
andHI , the orthogonal projection matrix ontoC(X), that enables to show that the two matrices
have the same eigenvectors and therefore commute. WhenK is not the identity or more gener-
ally a scalar matrix, then neitherH norΣK are symmetric and in fact our proof of the corollary,
revolves around the equality betweenΣKH andHΣK. In any case, the corollary establishes
that the matricesΣK andH commute and therefore have the same eigenvectors. Given that a
complete set of eigenvectors ofH spansRn, the matrixΣK can be reduced to a diagonal form
through the same matrix that diagonalisesH. This provides a further condition to verify if equality
holds between (2) and (4).

Typically, the design matrixX and eitherΣ or K are known. The first use of the above results
is to obtain the diagonal matrixK from the pairX,Σ, as the optimal kernel that yields the best
linear unbiased predictor ofy givenX, assuming the covariance structureΣ. For this purpose,
we need to be able to determine the matrixM of theorem 1. This is achieved in the next section,
which deals with local polynomial regression with equally spaced design points, for which the
matrixM has a very specialised structure.

3 Local polynomial regression

The leading case of interest for the application of the above results is local polynomial regression
in a time series setting. Essential references are Fan and Gjibels (1996) and Loader (1999). Let
us assume thatyt is a time series, measured at discrete and equally spaced time points, that can be
decomposed asyt = µt + εt, whereµt is the signal (trend) andεt ∼ NID(0, σ2) is the noise. The
signal is approximated locally by a polynomial of degreed, so that in the neighbourhood of time
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t we can write

yt+j = mt+j + εt+j , mt+j = β0 + β1j + β2j
2 + · · ·+ βdj

d, j = 0,±1, · · · ,±h.

In matrix notation, the local polynomial approximation can be written as follows:

y = Xβ + ε, ε ∼ N(0,Σ), (5)

wherey = [yt−h, · · · , yt, · · · , yt+h]′, ε = [εt−h, · · · , εt, · · · , εt+h]′,

X =




1 −h h2
... (−h)d

1 −(h− 1) (h− 1)2
... [−(h− 1)]d

...
... · · · · · · ...

1 0 0
... 0

...
... · · · · · · ...

1 h− 1 (h− 1)2
... (h− 1)d

1 h h2
... hd




, β =




β0

β1
...
βd




,

andΣ = {σij , i, j = −h, . . . , h}.
Using this design, the value of the trend at timet is simply given by the intercept,mt = β0.

Provided that2h ≥ d, thed + 1 unknown coefficientsβk, k = 0, . . . , d, can be estimated by the
method of generalised least squares, givingβ̂GLS = (X′Σ−1X)−1X′Σ−1y. In order to obtain
m̂t = β̂0, we need to select the first element of the vectorβ̂GLS . Hence, denoting bye1 thed + 1
vectore1 = [1, 0, . . . , 0]′,

m̂t = e′1β̂GLS = e′1(X
′Σ−1X)−1X′Σ−1y = w′y =

h∑

j=−h

wjyt−j ,

which expresses the estimate of the trend as a linear combination of the observations with coeffi-
cients

w = Σ−1X(X′Σ−1X)−1e1. (6)

We notice in passing that expression (6) can be equivalently derived as the solution of the con-
strained minimisation problem:

min
w
{w′Σw} subject tow′X = e′1,

where the linear constraintsw′X = e′1 enforce the condition that the trend estimate reproduces a
polynomial of degreed (i.e. if y = Xβ, m̂t = w′y = β0). See Hannan (1970, p. 186-187), and
Wallis (1983).

4



Estimates ofβ can be also obtained by the method of weighted least squares, which consists
of minimising with respect to theβk’s the objective function:

S(β̂0, . . . , β̂d) =
h∑

j=−h

κj

(
yt+j − β̂0 − β̂1j − β̂2j

2 − · · · − β̂dj
d
)2

,

whereκj ≥ 0 is a set of weights that define, either explicitly or implicitly, a kernel function.
In general, kernels are chosen to be symmetric and non increasing functions ofj, in order to
weight the observations differently according to their distance from timet; in particular, larger
weight may be assigned to the observations that are closer tot. As a result, the influence of each
individual observation is controlled not only by the bandwidthh but also by the kernel. In matrix
notation, settingK = diag(κ−h, . . . , κ−1, κ0, κ1, . . . , κh), the WLS estimate of the coefficients
is β̂WLS = (X′KX)−1X′Ky and the elements of the vectorw = KX(X′KX)−1e1 constitute
the so called equivalent kernel. Note that the notationw is used both for the GLS coefficients
(6) and for the equivalent kernel arising from WLS estimation, since we will mainly focus on the
case when their elements are identical. If this should not be the case, then which one of the two
meanings is to be intended will be clear from the context.

4 The optimal kernel in local polynomial regression

We address the question of the equivalence of the GLSE and the WLSE in the local polynomial
regression problem described above. When the conditions of theorem 1 are satisfied, we shall
refer to the diagonal elements ofK as the optimal kernel weights. We stress that here optimality
is in the Gauss-Markov sense and expresses the fact that usingK is equivalent to usingΣ for
computing the optimal estimate of the signal and its time derivatives.

The conditions under which the equivalence holds are typically difficult to check, but in the
local polynomial regression framework considered in the previous section, the particular structure
of the design matrix, and consequently of the matrixM of theorem 1, leads to a considerable
simplification.

The matrixM can be chosen as upper triangular with further zeros along the secondary, fourth,
and so on, (upper) diagonals. This follows from the algebraic structure ofX′KX andX′Σ−1X.
In fact, X′KX is a Hankel matrix whose elements are the valuesSr =

∑h
j=−h jrκj , for r =

0, 1, ..., 2d, from S0 to Sd in the first row and fromSd to S2d in the last column. Note that for
symmetric kernel weights satisfyingκj = κ−j , Sr = 0 for oddr and thereforeX′KX has null
elements along the secondary, fourth, and so on, diagonals. The matrixX′Σ−1X has not Hankel
structure but has zeros along the secondary, fourth, and so forth diagonals as well, which stems
from the fact that the covariance matrix of a stationary stochastic process is a symmetric Toeplitz
matrix. Illustrations will be provided in section5.

Now,M is such thatΣKXM−1 = XM−1D, whereD is a diagonal matrix (see Appendix A),
or, equivalently,Σ−1XM−1D = KXM−1. As a result, the linear combinations of the columns
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of X yielding the requiredp eigenvectors ofΣK, are provided byXM−1. This gives an operative
procedure to getK by Σ, formalised ind + 1 conditions that directly follow by the sparse upper
triangular structure ofM. In section5 we shall provide explicit conditions in terms of the generic
elements ofΣ−1 and ofK for d ≤ 3, which are the most frequently encountered degrees for the
fitting polynomial.

First and foremost, a very simple and easily checked necessary condition arises in a regression
framework with an intercept, i.e. when the first column ofX is the vector of ones, denoted
i = [1, 1, . . . , 1]′. This will be discussed below in section4.1.

4.1 Local constant regression and a simple necessary condition

When the degree of the fitting polynomial is equal to zero,X = i andM is a scalar, so that the
necessary and sufficient condition thatK andΣ must satisfy for the WLSE to equal to the GLSE
reduces toΣ−1i = Ki. Denoting byςij the generic element ofΣ−1, for i, j = −h, . . . , 0, . . . , h,
the unnormalised kernel weights are equal to the row sums of the elements of the inverse covari-
ance matrix, that is

κj =
h∑

i=−h

ςij , for j = −h, ..., h.

In the more general case, the first column of the matrixX is the vectori, and the matrixM is
upper triangular; hence, the first column ofX is itself an eigenvector ofΣK corresponding to an
eigenvalue, say,d1, so thatΣKi = d1i. It therefore follows that a necessary condition forK to
satisfy theorem 1 is that, up to the factord1,

Ki ∝ Σ−1i (7)

which means that the elements ofK are (proportional to) the sum of the row elements of the
inverse covariance matrixΣ−1. As pointed out above, for local constant estimators belonging
to the Nadaraya (1964) and Watson (1964) class, the condition is also sufficient. Hence, in the
general case we suggest the following strategy:

• derive a candidate kernel from the necessary conditionκ = Σ−1i;

• verify that the other conditions are met.

Obviously, for spherical errors,Σ = σ2I, the candidate kernel is the uniform kernel. Whenεt

is the first order autoregressive process, or AR(1),εt = φεt−1 + ξt, ξt ∼ WN(0, σ2), where WN
denotes a white noise process,

κ|h| = 1− φ, κj = (1− φ)2, j = 0,±1, . . . ,±(h− 1),

so that the kernel will be admissible, the weights will be non increasing with|j|, if −1 < φ < 0.
This example has been used in the literature to illustrate the asymptotic equivalence of OLS and
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Figure 1: Plot of the kernel weights associated to the covariance matrix of the AR(p) process
(1 + 0.64B)pεt = ξt, for p = 1, . . . , 6 andh = 6.

GLS for polynomial trend estimation. As a matter of fact, whenh goes to infinity, the kernel tends
to the uniform kernel. Ifεt = φ1εt−1 + φ2εt−1 + ξt, ξt ∼ WN(0, σ2),

κ|h| = 1−φ1−φ2, κ|h−1| = (1−φ1)2−φ2(2−φ1), κj = (1−φ1−φ2)2, j = 0,±1,±(h− 2).

The kernel will be admissible only for some parameter combinations. In general, ifεt ∼ AR(p),
the central weights for|j| ≤ h− p will be constant. Figure1 displays the kernel associated to the
AR(p) process(1 + 0.64B)pεt = ξt, whereB is the backshift operator such thatBkxt = xt−k,
for p = 1, . . . , 6, andh = 6. The process(1 − φB)pεt = ξt with a positiveφ does not yield an
admissible kernel, asΣ−1i has negative elements.

4.2 Non-invertible moving average models

An important class of candidate kernels, nesting the Epanechnikov and the Henderson kernels,
arises in the local polynomial regression framework, when the errorεt is generated by the non-
invertible moving average (MA) process of orderq:

εt = (1−B)qξt, ξt ∼ WN(0, σ2). (8)

From the interpretative standpoint, (8) is the roughest stationary MA(q) process, since its spectral
density hasq unit poles at the zero frequency and increases monotonically from 0 to the Nyquist
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frequency. As a consequence, postulating this model amounts to impose a smoothness prior on
the signal estimates.

Let us denote byΣq the covariance matrix of the process (8). This is the symmetric2h +
1-banded Toeplitz matrix, with the coefficients associated withB in the binomial expansion of
(1−B)2q, displayed symmetrically about the diagonal in each row and column. For instance,

Σ1 =




2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2
... 0 0

...
...

... ...
...

...
...

...
... ... 2 −1

0 0 0 . . . −1 2




,Σ2 =




6 −4 1 . . . 0 0
−4 6 −4 . . . 0 0

1 −4 6
... 0 0

...
...

... ...
...

...
...

...
... ... 6 −4

0 0 0 . . . −4 6




.

For determining the candidate kernel by the necessary conditionΣ−1
q i, we use a result due to

Hoskins and Ponzo (1972), according to which thej-th row sumΣ−1
q i is

h∑

i=−h

ςq,ij =

(
h+j+q

q

)(
h−j+q

q

)
(
2q
q

) , j = −h, ..., h,

where we have adapted Theorem 3, p. 396, of Hoskins and Ponzo (1972) to our notation and
corrected a minor mistake concerning the sign. Hence,

∑h
i=−h ςq,ij = 1

(2q)!
(h+j+q)!
(h+j)!

(h−j+q)!
(h−j)! =

= 1
(2q)!(h + 1 + j)(h + 2 + j) . . . (h + q + j)(h + 1− j)(h + 2− j) . . . (h + q − j)

= 1
(2q)! [(h + 1)2 − j2] . . . [(h + q)2 − j2]

= κq,j .

In conclusion, the candidate kernel satisfyingκq = Σ−1
q i has weights

κq,j ∝ [(h + 1)2 − j2][(h + 2)2 − j2] . . . [(h + q)2 − j2], (9)

for j = −h, ..., h.

When q = 1, εt = (1 − B)ξt and κ1 is the Epanechnikov (1969) kernel, with elements
κ1,j ∝ [(h + 1)2 − j2], or, equivalently,

κ1,j ∝ 3
4

[
1−

(
j

h + 1

)2
]

, j = −h, ..., h.

The Epanechnikov kernel minimises the asymptotic mean integrated square error (see Priestley
and Chao, 1972, and Benedetti, 1977) and the efficiency of any kernel estimator is generally
measured with respect to it (see Wand and Jones, 1995).
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Figure 2: Plot of the normalised kernel weights associated to the covariance matrix of the non-
invertible MA(q) processεt = (1−B)qξt, for q = 1, . . . , 6 andh = 10.

Also another popular kernel, the Henderson kernel (Henderson, 1916) is nested in (9), arising
whenq = 3:

κ3,j ∝ [(h + 1)2 − j2][(h + 2)2 − j2][(h + 3)2 − j2]. (10)

The Henderson filter (see Henderson, 1916, Kenny and Durbin, 1982, Loader, 1999, Ladiray and
Quenneville, 2001) arises as the weighted least squares estimator of a local cubic trend at timet

using2h + 1 consecutive observations. The filter has a long tradition for trend-cycle estimation
in economic time series. The relevance of Henderson’s contribution to modern local regression
is stressed in Loader (1999). Currently, the Henderson filters are employed for trend estimation
in the X-12-ARIMA procedure, the official seasonal adjustment procedure in the U.S., Canada,
the U.K. and many other countries. See Dagum (1980), Findleyet al. (1998) and Ladiray and
Quenneville (2001) for more details.

Henderson (1916) addressed the problem of defining a set of kernel weights that maximise the
smoothness of the estimated local cubic trend, in the sense that the variance of its third differences
is as small as possible. In local cubic regression, withd = 3, the GLSE of the trend when the
covariance matrixΣ3 is the symmetric Toeplitz matrix with nonzero elementsσii = 20, σi,i+1 =
σi,i−1 = −15, σi,i+2 = σi,i−2 = 6, σi,i+3 = σi,i−3 = −1, is equivalent to the WLSE obtained
using the kernel (10).

Hannan (1970, p. 186-187), and Wallis (1983) observed this equivalence by referring to
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the derivation of the Henderson filter as the solution of the constrained minimisation problem:
minw{w′Σ3w} subject tow′X = e′1, where the linear constraints enforce the condition that the
trend estimate reproduces a cubic polynomial. In the next section we prove a more general result
that encompasses this equivalence. Notice also that in our approach, the Henderson kernel need
not be associated to local cubic polynomial estimation, as it can be defined for any value ofd.

5 Local polynomial regression and higher order conditions

This section discusses whether the candidate kernel satisfies the additional equivalence conditions.
It will turn out, for instance, that whenX is a polynomial of orderd ≥ 1, the kernel derived above
for the AR(p) process(1 − φB)pεt = ξt does not satisfy the other conditions. On the other
hand, these conditions are automatically satisfied by the candidate kernels arising from the strictly
non-invertible MA processεt = (1−B)qξt, as it is stated in the following proposition.

Proposition 1 The kernel (9) is optimal for the non-invertible MA(q) process (8).

The proof, provided in the appendix, is based on the fact that the covariance matrix of the
non-invertible MA(q) process (8) is associated with the finite difference operator of order2q,
∆2q, ∆ = (1− B), subject to null boundary conditions. At the same time, the matrixKq, which
is the diagonal matrix with diagonal elements given by the candidate kernel (9), has elements that
lie on a polynomial of the same order,2q. In the local polynomial regression setting considered
so far, the convolution of these operators act onto symmetric or skew-symmetric vectors, such as
the columns ofX, leaving unchanged their symmetric and polynomial structure. As a result the
column space ofΣqKqX coincides with that ofX.

5.1 Local linear regression

Whend = 1, then, following the considerations in section4, X′Σ−1X andX′KX are diagonal,
and so is the matrixM satisfyingΣ−1XM−1D = KXM−1. It therefore follows that necessary
and sufficient conditions for̂βGLS = β̂WLS areΣ−1xr ∝ Kxr for r = 1, 2, wherexr denotes
ther-th column of theX matrix, i.e.

h∑

i=−h

ςij ∝ κj ,
h∑

i=−h

iςij ∝ jκj , j = −h, ..., h (11)

Alternatively, using the matrix equationsΣKX = XM−1DM, which for this case reduce to
ΣKX = XD, D = diag(d1, d2), and writingΣ = {σij}, the necessary and sufficient conditions
become

h∑

i=−h

σijκi = d1,
h∑

i=−h

iσijκi = d2j, j = −h, ..., h. (12)
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It is straightforward to see that the candidate kernels derived for the AR(p) process do not
satisfy the above conditions. On the other hand, (11) can be verified using the expression ofςij
in Lemma 5, p. 397, of Hoskins and Ponzo (1972), whereas (12) can be verified either directly or
using Theorem 1, p. 394, of Hoskins and Ponzo (1972).

5.2 Local quadratic regression

In the cased = 2, the expressions forM and its inverse are:

M =




m11 0 m13

0 m22 0
0 0 m33


 , M−1 =




m(11) 0 m(13)

0 m(22) 0
0 0 m(33)




and, therefore, the following further condition, besides (11) and (12), is required:

h∑

i=−h

i2ςij =
1
d3

[
j2 +

m(13)

m(33)

(
1− d3

d1

)]
κj for j = −h, ..., h. (13)

In the first order moving average case it is convenient to work withΣKX = XM−1DM. The
first two conditions are as before, and the third can be written as the difference equation:

κj+1 + κj−1 = −m(13)

m(33)
(d3 − d1) + (d3 + d1 − 2d2)j2. (14)

It is immediate to check that (14) holds for the Epanechnikov kernel and the higher order kernels
(9).

5.3 Local cubic regression: the Henderson filters

In the cased = 3,

M =




m11 0 m13 0
0 m22 0 m24

0 0 m33 0
0 0 0 m44


 , M−1 =




m(11) 0 m(13) 0
0 m(22) 0 m(24)

0 0 m(33) 0
0 0 0 m(44)




so that a fourth condition besides (11), (12) and (13) has to be satisfied, which involves odd powers
of j,

h∑

i=−h

i3ςij =
1
d4

[
j3 +

m(24)

m(44)

(
1− d4

d2

)
j

]
κj for j = −h, ..., h,

where the proportionality constant isd−1
4 .

In terms of the difference equationΣKXM−1 = XM−1D, whenεt is a first order moving
average error term, the conditions that a kernel has to satisfy are the following:
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− κj−1 + 2κj − κj+1 = d1, (15)

κj−1 − κj+1 = j(d2 − d1), (16)

κj−1 + κj+1 = −m(13)

m(33)
(d3 − d1) + (d3 + d1 − 2d2)j2, (17)

(d1 − 3d2 + d3 − d4)j3 = j

[
m(24)

m(44)
(d4 − d2)− (d2 − d1)− 3

m(13)

m(33)
(d3 − d1)

]
. (18)

Note that for a strictly non-invertible MA process, (18) is always satisfied by the Epanechnikov
kernel, given that bothd1 − 3d2 + d3 − d4 andm(24)

m(44) (d4 − d2)− (d2 − d1)− 3m(13)

m(33) (d3 − d1) are
null quantities.

6 Kernel smoothing

In this section we consider the inverse problem of reconstructing, if there exists, a covariance
structure (i.e. some stochastic process) for which a given kernel estimator is BLUE. Hence, the
starting point of this section is a set of kernel weights. With respect to local polynomial regression,
that has a long tradition for smoothing time series (see Macaulay, 1931), kernel estimators for the
fixed design regression problem (5) are of more recent origin (Priestley and Chao, 1972). The
equivalence between the two methods has been explored by Müller (1987), who pointed out how
kernel estimation is a particular case of local polynomial regression where locally weighted aver-
aging is performed instead of locally weighted regression and kernel weights are given explicitly
as wj = κj(

∑h
j=−h κj)−1.

Writing, as before,κ = [κh, . . . , κ1, κ0, κ1, . . . , κh]′, the vector containing the elements of a
given symmetric and positive kernel with associated diagonal matrixK, up to some constant, we
can express condition (7) as follows:

Σκ = i. (19)

We assume thatΣ represents the covariance structure of a stationary stochastic process, and there-
fore that it is a symmetric, positive definite and Toeplitz matrix completely characterised by its
first row or column elements, collected in the vectorσ = [σ11, σ12, σ13, ..., σ1,2h+1]′. Hence, (19)
can be written as

Kσ = i (20)
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where

K =




κh κh−1 . . . κh−1 κh

κh−1 κh + κh−2 . . . κh 0
...

... · · · . . .
...

κ0 2κ1 . . . 0 0
...

... · · · · · · ...
κh−1 κh + κh−2 . . . κh 0
κh κh−1 . . . κh−1 κh




.

It is evident that the linear system (20) is redundant: the lasth rows of the complete matrix[K|i]
can be deleted thus giving rise to a system ofh + 1 equations in2h + 1 unknown variables, let us
denote it byK†σ = i†, where the symbol† indicates that only the firsth + 1 rows ofK andi are
selected. As long as the rank ofK† is equal to that of[K†|i†], the system admits infinite solutions
depending on the values assumed byh variables, namelyσ1,h+2, σ1,h+3, . . . , σ1,2h+1. Choices for
the latter values that restitute a unique solution can be obtained by setting all the free variables
equal to zero or by selecting the minimum norm solution which is the orthogonal projection onto
the row space ofK†. These are not always amenable choices, since they may lead to non positive
definite or singular covariance matrices.

Whenh = 1, explicitly solving (20) gives a symmetric Toeplitz matrix whose first row or
column elements, depending on any value ofσ13, are:

σ11 = κ−1
0 − 2κ1κ

−1
0 σ12

σ12 = (κ0 − κ0κ1σ13 − κ1)(κ2
0 − 2κ2

1)
−1

σ13 = free parameter.
(21)

Whenh > 1, analytic solutions become rather complicate to calculate. Anyway, exact numeri-
cal solutions may be found by solving the linear system (20) using scale reduction algorithms. For
example, take theQR decomposition ofK† and then back-solveRσ = Q′i†.

Admissible solutions exist forh ≥ 1 when the Epanechnikov, the biweight or the tricube
kernels are chosen. The latter arise for values ofs equal to2 and3, respectively, in the following
equation

κj ∝
(

1−
∣∣∣∣

j

h + 1

∣∣∣∣
s)s

, j = −h, ..., h. (22)

and are the suggested weighting functions in the robust locally weighted regression method (loess)
developed by Cleveland (1979).

On the other hand, not all the kernels are optimal for some stochastic process. An example is
the Gaussian kernel, whose weights are

κj ∝ exp

{
−1

2

(
j

b

)2
}

, j = −h, ..., h,

where theb > 0 is the smoothing parameter determining the bandwidth. The Gaussian kernel
arises as the probability density function of the infinite sum of independent rectangular random
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variables, and is largely applied for density estimation. Despite its popularity, forh = 1 there does
not exist any value ofσ13 such that the resultingΣ is positive definite and our numerical analysis
seems to reveal that no admissible covariance structures may be derived for larger bandwidths. In
other words, our empirical evidence induces to conclude that there does not exist any stochastic
process for which the Gaussian kernel is BLUE. The same occurs with the triweight kernel

κj ∝ 35
32

[
1−

(
j

h + 1

)2
]3

, j = −h, ..., h

and with the triangle kernel arising whens = 0 in (22). Note that whenh is large, the weights
of the polynomial kernel (10), giving the Henderson filters, become approximately proportional
those of the triweight kernel (see Loader, 1999, Ex. 1.6, and Müller, 1984). Whenh is not too
large, the approximation is not sensible and boundary conditions make the difference between the
two estimators, even with respect to their Gauss-Markov optimality.

7 Conclusions

The paper has proven a general result establishing the conditions under which generalised least
squares estimation is equivalent to weighted least squares estimation. The result has relevant
implications for kernel smoothing in local polynomial framework. In particular it allowed to
derive a class of polynomial kernels that are isomorphic to covariance structures associated to non
invertible moving average processes for the errors, that encompass well known kernels such as
Epanechnikov and the Henderson kernel.
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A Proofs of the main results

In this section, we provide the proofs of Theorem 1, Corollary 1 and Proposition 1. The proof
of Theorem 1 requires a result concerning the simultaneous diagonalisation of two symmetric
positive definite matrices (Lemma 1), which is a particular case of a well known result (see Magnus
and Neudecker, 2007, Theorem 23, p. 23).

Lemma 1 Let A andB be symmetric and positive definite matrices of the same order. Then, a
non singular matrixC and a positive definite diagonal matrixD exist, such thatC′AC = I and
C′BC = D whereI is the identity matrix.

Proof SinceA is symmetric and positive definite, it can be factorised asA = (E−1)′E−1 (e.g.
by a Cholesky decomposition) so thatE′AE = I. Let denote byQ the orthogonal matrix that
diagonalisesE′BE, i.e. Q′E′BEQ = D. SettingC = EQ one getsC′BC = D andC′AC =
I. Note that the elements ofD are the eigenvalues ofE′BE corresponding to the eigenvectorsQ as
well as the eigenvalues ofA−1B corresponding to the eigenvectorsC, given thatC−1A−1BC =
D, as follows byA−1 = EE′¥

The proof of Theorem 1 is divided into two parts. We first prove thatX = V∗M, whereV∗

is a matrix whose columns containp eigenvectors ofΣK, andM is nonsingular, is a sufficient
condition forβGLS = βWLS and then that the equivalenceβGLS = βWLS implies that we can
expressX = V∗M (necessity).

Proof of Theorem 1.(Sufficiency)Let us assume thatX = V∗M whereV∗ contains, as columns,
p eigenvectors ofΣK andM is a non singular matrix. The condition onV∗ can be formalised as
follows,

(ΣK)V∗ = V∗Λ∗

whereΛ∗ is diagonal and its elements are the eigenvalues ofΣK corresponding to the eigenvectors
that are columns ofV∗. Equivalently,

V∗′Σ−1 = Λ∗−1V∗′K

from which follows that

β̂GLS = (X′Σ−1X)−1X′Σ−1y =
= (M′V∗′Σ−1V∗M)−1M′V∗′Σ−1y
= (M′Λ∗−1V∗′KV∗M)−1M′Λ∗−1V∗′Ky

=
(
(M′Λ∗−1M′−1)(M′V∗′)K(V∗M)

)−1
(M′Λ∗−1M′−1)(M′V∗′)Ky

=
(
(M′V∗′)K(V∗M)

)−1
(M′V∗′)Ky

= (X′KX)−1X′Ky
= β̂WLS .
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(Necessity) The equality between the WLSE (4) and the GLSE (2) implies

KX(X′KX)−1 = Σ−1X(X′Σ−1X)−1,

or, equivalently,
ΣKX = X(X′Σ−1X)−1(X′KX). (23)

SinceX′Σ−1X andX′KX are positive definite and symmetric, by Lemma 1, there exists a non
singular matrixC such thatC′(X′Σ−1X)C = I, andC′(X′KX)C = D, whereD is a diagonal
matrix containing the eigenvalues of(X′Σ−1X)−1(X′KX) corresponding to the (eigenvectors)
columns ofC. Hence, replacing(X′Σ−1X)−1(X′KX) = CDC−1 into (23), givesΣKX =
XCDC−1, or

(ΣK)XC = (XC)D.

The latter equality tells that thep columns ofXC are eigenvectors ofΣK with corresponding
eigenvalues given byD. SettingXC = V∗ andM = C−1 proves the theorem¥

Proof of Corollary 1. If Theorem 1 holds, then(ΣK)XC = (XC)D. Pre-multiplying both
members of the latter equation byH and reminding thatHX = X the result is

(HΣK)XC = HXCD = (XC)D.

On the other hand, let us consider the matrixΣKH. It is evident that

(ΣKH)XC = ΣKXC = (XC)D.

Up to now we have proved that if theorem 1 holds, thenHΣK andΣKH sharep eigenvectors (the
same ofΣK that are linear combinations of the columns ofX) associated to equal eigenvalues.
If we show thatHΣK andΣKH also share other2h− p independent eigenvectors associated to
equal eigenvalues we have proved that the two matrices are equal. To do that, remind by section
2 thatH is the (oblique) projection matrix ontoC(X) alongN (X′Σ−1) (see Meyer, 2000, pag.
634), or equivalently alongN (X′K), since the projector is unique. ThereforeH is diagonalisable
and hasp eigenvectors inC(X) associated to eigenvalues equal to one andn − p eigenvectors
in N (X′Σ−1) or N (X′K) associated to null eigenvalues. As such, the latter eigenvectors are
all thosez ∈ Rn such thatX′Σ−1z = X′Kz = 0

¯
. The samez are eigenvectors ofHΣK

andΣKH associated to zero eigenvalues as well. In fact,∀z ∈ N (X′K),ΣKHz = 0
¯

and
HΣKz = X(X′Σ−1X)−1X′Kz = 0

¯
.

On the other hand, ifHΣ−1ΣK = ΣKHK , thenX(X′Σ−1X)−1X′K = ΣKX(X′KX)−1X′K
and pre-multiplying byΣ−1 and post-multiplying byK−1 one obtainsΣ−1X(X′Σ−1X)−1X′ =
KX(X′KX)−1X′ that isH′

Σ−1 = H′
K , implying equality of the WLSE obtained with kernelK

and the GLSE with covariance matrixΣ¥
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Proof of Proposition 1. Let us define the matrixX∗ ∈ R(2(h+q)+1)×(d+1),, 0 < q < 2h, as the
local polynomial regression design matrix withd + 1 columns and bandwidthh∗ = h + q (see
section3). The element in the(h∗ + j + 1)− th row andr-th columns, isjr−1, j = −h∗, . . . , h∗,
r = 1, . . . , d + 1.

Let alsoΣ∗
q ∈ R(2h+1)×(2h∗+1), denote the matrix formed from the central2h + 1 rows of the

(2h∗+1) dimensional covariance matrix of the noninvertible MA(q) processεt = (1−B)qξt, ξt ∼
WN(0, 1), t = −h∗, . . . , h∗, where, for instance,

Σ∗
1 =




−1 2 −1 0 . . . 0 0

0 −1 2 −1
... 0 0

...
... ... ... ... ...

...

0 · · · ... −1 2 −1 0
0 · · · · · · 0 −1 2 −1




.

Notice thatΣq can be obtained fromΣ∗
q by deleting the first and lastq columns.

The matrixΣ∗
q is associated with the difference operator(1 − B)2q subject to null boundary

conditions. Specifically,Σ∗
q acts onto any polynomial vector of degreed by lowering its order to

d − 2q and by annihilating its first and lastq components. Hence, ford < 2q, Σ∗
qX

∗
q = 0, where

0 is the null matrix inR(2h+1)×(d+1), or, equivalently,C(X∗) ⊂ N (Σ∗
q).

As the elements of each of the rows of the matrix are the coefficients ofB in the expansion
of (1 − B)2q, we can define a vectorκ∗q , whose elements lie on a polynomial of degreed = 2q,
subject to suitable boundary conditions, such thatΣ∗

qκ
∗
q ∝ i. In particular, the vectorκ∗q has to

satisfy the following properties:

(p1) the elements ofκ∗q are non negative and describe a polynomial of order2q in j, denoted
υq(j), for j = −(h + q),−h− (q − 1), ..., h + q;

(p2) the polynomial is null forj = h+1, h+2, ..., h+q andj = −(h+1),−(h+2), ...,−(h+q).

The property (p2) gives exactly2q roots ofυq(j). The latter can be therefore factorised as follows:

υq(j) = [(h + 1)− j][(h + 2)− j] · · · [(h + q)− j][(h + 1) + j][(h + 2) + j]...[(h + q) + j]
= [(h + 1)2 − j2][(h + 22 − j2)] · · · [(h + q)2 − j2].

When combined, (p1) and (p2) give the symmetric kernelυq(j), so thatκ∗q = (0′q, κ′q, 0′q)′ is the
vector of kernel weightsκq extended by insertingq zeros before and after.

Let us now define the matrixK∗
q which has the vectorκ∗q on the main diagonal and zero

elements elsewhere. Hence,

K∗
q =




0 0 0
0 Kq 0
0 0 0


 .
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The matrixΣ∗
qK

∗
q has row elements that are the coefficients of the convolutions of the polynomial

υq(j), with the difference operator(1 − B)2q. When applied toX∗, the operatorΣ∗
qK

∗
q leaves

unchanged (up to a linear transformation) the degree and the structure of the columns ofX∗ and
annihilates the first and lastq elements. In other words, since the columns ofX∗ are symmetric or
skew-symmetric vectors defining a polynomial basis, premultiplication by matrixΣ∗

qK
∗
q which is

the product of a matrix which annihilates a polynomial of degree2q and which raises the degree
of a polynomial term by2q, yields a compensating effect, so thatΣ∗

qK
∗
qX

∗ ⊆ C(X) or, more
generally,

Tq(C(X∗)) ⊆ C(X), (24)

whereTq is the linear operator associated withΣ∗
qK

∗
q , i.e. Tq(x) = Σ∗

qK
∗
qx, andTq(C(X∗)) =

{Tq(x),x ∈ C(X∗)}.
Now, direct multiplication shows that,

Σ∗
qK

∗
qX

∗ = ΣqKqX, (25)

and combining (24) with (25) gives

T(C(X)) ⊆ C(X) (26)

whereT(C(X)) = {ΣqKqx,x ∈ C(X)}, i.e. C(X) is an invariant subspace ofR2h+1 underT
(see Meyer, 2000, pag. 259). SinceT(C(X)) andC(X) have the same dimension, equal tod + 1,
equality holds in (26). It follows that there existd+1 linearly independent vectorsc1, c2, ..., cd+1

such thatΣqKqXci = Xcidi for some coefficientsdi, i = 1, 2, ..., d + 1. In matrix notation,
settingC = [c1, c2, ..., cd+1] andD = diag{d1, d2, ..., dd+1}, the above relation becomes

ΣqKqXC = XCD.

Hence, we have proved that there existd + 1 linear combinations of the columns ofX that are
eigenvectors ofΣqKq, i.e. the kernel (9) is optimal in the Gauss-Markov sense for the non-
invertible MA(q) process (8).

Equivalently one could have noted that equation (26) implies thatC(X) ⊆ N (ΣK−dI), where
d is any eigenvalue ofΣK (see Meyer, 2000, pag. 265). Since the dimension ofC(X) is equal to
d + 1, the above relation establishes that there existd + 1 linear combinations of the columns of
X that are eigenvectors ofΣqKq¥
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