22 research outputs found

    Evaluation of Osteoconductive Scaffolds in the Canine Femoral Multi-Defect Model

    Get PDF
    Treatment of large segmental bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials. This project was designed to rapidly assess and compare promising biodegradable osteoconductive scaffolds for use in the systematic development of new bone regeneration methodologies that combine scaffolds, sources of osteogenic cells, and bioactive scaffold modifications. Promising biomaterials and scaffold fabrication methods were identified in laboratories at Rutgers, MIT, Integra Life Sciences, and Mayo Clinic. Scaffolds were fabricated from various materials, including poly(L-lactide-co-glycolide) (PLGA), poly(L-lactide-co-É›-caprolactone) (PLCL), tyrosine-derived polycarbonate (TyrPC), and poly(propylene fumarate) (PPF). Highly porous three-dimensional (3D) scaffolds were fabricated by 3D printing, laser stereolithography, or solvent casting followed by porogen leaching. The canine femoral multi-defect model was used to systematically compare scaffold performance and enable selection of the most promising substrate(s) on which to add cell sourcing options and bioactive surface modifications. Mineralized cancellous allograft (MCA) was used to provide a comparative reference to the current clinical standard for osteoconductive scaffolds. Percent bone volume within the defect was assessed 4 weeks after implantation using both MicroCT and limited histomorphometry. Bone formed at the periphery of all scaffolds with varying levels of radial ingrowth. MCA produced a rapid and advanced stage of bone formation and remodeling throughout the defect in 4 weeks, greatly exceeding the performance of all polymer scaffolds. Two scaffold constructs, TyrPC[subscript PL]/TCP and PPF4[subscript SLA]/HA[subscript PLGA Dip], proved to be significantly better than alternative PLGA and PLCL scaffolds, justifying further development. MCA remains the current standard for osteoconductive scaffolds.United States. Army Medical Research and Materiel Command (Armed Forces Institute of Regenerative Medicine)United States. Office of Naval ResearchUnited States. Air Force. Office of the Surgeon GeneralUnited States. NavyNational Institutes of Health (U.S.)United States. Veterans AdministrationCleveland Clinic Foundatio

    Evaluation of rhBMP-2/collagen/TCP-HA bone graft with and without bone marrow cells in the canine femoral multi defect model

    No full text
    Recombinant human bone morphogenetic protein-2, when applied to an absorbable type 1 bovine collagen sponge (rhBMP-2/ACS) is an effective therapy in many bone grafting settings. Bone marrow aspirate (BMA) has also been used as a source of transplantable osteogenic connective tissue progenitors. This study was designed to characterize the performance of a scaffold comprising rhBMP-2/ACS in which the sponge wraps around tri-calcium phosphate hydroxyapatite granules (rhBMP-2/ACS/TCP-HA) and to test the hypothesis that addition of BMA will improve the performance of this construct in the Canine Femoral Multi Defect Model. In each subject, two sites were grafted with rhBMP-2/ACS/TCP-HA scaffold loaded with BMA clot and two other sites with rhBMP-2/ACS/TCP-HA scaffold loaded with wound blood (WB). After correction for unresorbed TCP-HA granules, sites grafted with rhBMP-2/ACS/TCP-HA+BMA and rhBMP-2/ACS/TCP-HA+WB were similar, with mean percent bone volumes of 10.9 % ± 1.2 and 11.2 % ± 1.2, respectively. No differences were seen in quantitative histomorphometry. While bone formation using both constructs was robust, this study did not support the hypothesis that the addition of unprocessed bone marrow aspirate clot improved bone regeneration in a site engrafted with rhBMP-2/ACS/TCP-HA+BMA. In contrast to prior studies using this model, new bone formation was greater at the center of the defect where TCP-HA was distributed. This finding suggests a potential synergy between rhBMP-2 and the centrally placed ceramic and cellular components of the graft construct. Further optimization may also require more uniform distribution of TCP-HA, alternative cell delivery strategies, and a more rigorous large animal segmental defect model

    Comparative Evaluation of Urinary PCA3 and TMPRSS2: ERG Scores and Serum PHI in Predicting Prostate Cancer Aggressiveness

    No full text
    It has been suggested that urinary PCA3 and TMPRSS2:ERG fusion tests and serum PHI correlate to cancer aggressiveness-related pathological criteria at prostatectomy. To evaluate and compare their ability in predicting prostate cancer aggressiveness, PHI and urinary PCA3 and TMPRSS2:ERG (T2) scores were assessed in 154 patients who underwent radical prostatectomy for biopsy-proven prostate cancer. Univariate and multivariate analyses using logistic regression and decision curve analyses were performed. All three markers were predictors of a tumor volume ≥0.5 mL. Only PHI predicted Gleason score ≥7. T2 score and PHI were both independent predictors of extracapsular extension (≥pT3), while multifocality was only predicted by PCA3 score. Moreover, when compared to a base model (age, digital rectal examination, serum PSA, and Gleason sum at biopsy), the addition of both PCA3 score and PHI to the base model induced a significant increase (+12%) when predicting tumor volume >0.5 mL. PHI and urinary PCA3 and T2 scores can be considered as complementary predictors of cancer aggressiveness at prostatectomy
    corecore