2,318 research outputs found

    Kinase inhibit region of SOCS3 attenuates IL6-induced proliferation and astrocytic differentiation of neural stem cells via cross talk between signaling pathways

    Get PDF
    Aims: Efficiency of neural stem cells (NSCs) therapy for brain injury is restricted by astrogliosis around the damaged region, in which JAK2/STAT3 signaling plays a key role. The SOCS3 that can directly inhibit JAK/STAT3 pathway. Here, we investigated the effects of a fusion peptide that combined kinase inhibitory region (KIR) of SOCS3 and virus trans-activator of transcription (TAT) on biological behavior of cultured NSCs under inflammatory conditions. Methods: NSCs were isolated from embryonic brain of SD rats, TAT-KIR was synthesized, and penetration rate was evaluated by flow cytometry (FACS). CCK8, immunostaining, and FACS were used to detected of TAT-KIR on the proliferation of NSCs. The expressions of GFAP and β tubulin III positive cells induced by IL6 with/without TAT-KIR were examined by immunostaining and Western blotting to observe the NSCs differentiation, and the effect of TAT-KIR on signaling cross talk was observed by Western blotting. Results: Penetration rate of TAT-KIR into primary cultured NSCs was up to 94%. TAT-KIR did not affect the growth and viability of NSCs. It significantly reduced the NSCs proliferation that enhanced by IL-6 stimulation via blocking the cell cycle progression from the G0/G1 to S phase. In addition, TAT-KIR attenuated astrocytic differentiation and kept high level of neuronal differentiation derived from IL-6-induced NSCs. The fate of NSCs differentiation under inflammatory conditions was affected by TAT-KIR, which was associated with synchronous inhibition of STAT3 and AKT, while promoting JNK expression. Conclusion: TAT-KIR mimetic of SOCS3 could be a promising approach for brain repair via regulating the biological behaviors of exogenous NSCs

    Landslide mapping from aerial photographs using change detection-based Markov random field

    Get PDF
    Landslide mapping (LM) is essential for hazard prevention, mitigation, and vulnerability assessment. Despite the great efforts over the past few years, there is room for improvement in its accuracy and efficiency. Existing LM is primarily achieved using field surveys or visual interpretation of remote sensing images. However, such methods are highly labor-intensive and time-consuming, particularly over large areas. Thus, in this paper a change detection-based Markov random field (CDMRF) method is proposed for near-automatic LM from aerial orthophotos. The proposed CDMRF is applied to a landslide-prone site with an area of approximately 40 km2 on Lantau Island, Hong Kong. Compared with the existing region-based level set evolution (RLSE), it has three main advantages: 1) it employs a more robust threshold method to generate the training samples; 2) it can identify landslides more accurately as it takes advantages of both the spectral and spatial contextual information of landslides; and 3) it needs little parameter tuning. Quantitative evaluation shows that it outperforms RLSE in the whole study area by almost 5.5% in Correctness and by 4% in Quality. To our knowledge, it is the first time CDMRF is used to LM from bitemporal aerial photographs. It is highly generic and has great potential for operational LM applications in large areas and also can be adapted for other sources of imagery data

    Response of Laser-Induced Thermal Lens Effect at Solid Surface

    Get PDF
    Recently Kuo et al. [1,2] and Satio et al.[3] presented the surface-thermal lens (STL) technique, this novel photothermal deformation technique has attracted great attention because it is a highly sensitive, noncontact and nondestructive measurement[4–6]. In this technique, a modulated pump beam is focused on the sample surface to produce the surface deformation and a cw probe beam is incident at the deformation region. Differing from the conventional photothermal deformation techniques, the spot size of the probe beam at the sample surface is much larger than the pump beam one. Then the probe beam reflected from the surface produces a diffraction pattern at the detection plane. More recently, STL technique has been successfully applied to study the temperature dependence of the thermal conductivity of semiconductor materials[5], weak absorption of optical thin films[6] and characterization of the solid materials[7,8]. However, the mechanism of STL phenomena has not been completely understood. Most theoretical models took no account of the influence of the air-thermal lens (ATL), although some experiment showed that the air significantly affected the detected diffraction pattern[2]. In addition, it is necessary to characterize frequency responses of signals because the response is used to determine the thermal property of the solid materials[5]

    Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion

    Get PDF
    Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can "capture'' visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left-or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs-one short (75 ms), one long (325 ms)-were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects

    Intrinsic flexibility of the EMT zeolite framework under pressure

    Get PDF
    The roles of organic additives in the assembly and crystallisation of zeolites are still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether (18C6) as an additive, which has previously been shown to differentiate between the zeolite EMC-2 (EMT) and faujasite (FAU) frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high-pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility—agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a geometric template. This was further studied by computational modelling using solid-state density-functional theory and lattice dynamics calculations. It is shown that the lattice energy of FAU is lower than EMT, but is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy and is stabilised by free energy at a finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free energy of crystallisation to assemble the EMT framework as opposed to FAU

    Morphology control and optical properties of SiGe nanostructures grown on glass substrate

    Get PDF
    With the rapid progress of nanotechnology, nanostructures with different morphologies have been realized, which may be very promising to enhance the performance of semiconductor devices. In this study, SiGe nanostructures with several kinds of configurations have been synthesized through a chemical vapor deposition process. By controlling growth conditions, different SiGe nanostructures can be easily tuned. Structures and compositions of the nanostructures were determined by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The optical properties of various SiGe nanostructures revealed some dependence with their morphologies, which may be suitable for solar cell applications. The control of the SiGe morphology on nanoscale provides a convenient route to produce diverse SiGe nanostructures and creates new opportunities to realize the integration of future devices

    Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries

    Get PDF
    © 2015 Nature Publishing Group All rights reserved. Cathode catalysts are the key factor in improving the electrochemical performance of lithium-oxygen (Li-O2) batteries via their promotion of the oxygen reduction and oxygen evolution reactions (ORR and OER). Generally, the catalytic performance of nanocrystals (NCs) toward ORR and OER depends on both composition and shape. Herein, we report the synthesis of polyhedral Au NCs enclosed by a variety of index facets: cubic gold (Au) NCs enclosed by {100} facets; truncated octahedral Au NCs enclosed by {100} and {110} facets; and trisoctahedral (TOH) Au NCs enclosed by 24 high-index {441} facets, as effective cathode catalysts for Li-O2 batteries. All Au NCs can significantly reduce the charge potential and have high reversible capacities. In particular, TOH Au NC catalysts demonstrated the lowest charge-discharge overpotential and the highest capacity of ∼ 20 298 mA h g-1. The correlation between the different Au NC crystal planes and their electrochemical catalytic performances was revealed: high-index facets exhibit much higher catalytic activity than the low-index planes, as the high-index planes have a high surface energy because of their large density of atomic steps, ledges and kinks, which can provide a high density of reactive sites for catalytic reactions

    Nanocomposite ZnO–SnO2 Nanofibers Synthesized by Electrospinning Method

    Get PDF
    We report the characterization of mixed oxides nanocomposite nanofibers of (1 − x) ZnO-(x)SnO2 (x ≤ 0.45) synthesized by electrospinning technique. The diameter of calcined nanofibers depends on Sn content. Other phases like SnO, ZnSnO3, and Zn2SnO4 were absent. Photoluminescence studies show that there is a change in the blue/violet luminescence confirming the presence of Sn in Zn-rich composition. Present study shows that the crystalline nanocomposite nanofibers with stoichiometry of (1 − x)ZnO-(x)SnO2 (x ≤ 0.45) stabilize after the calcination and possess some morphological and optical properties that strongly depend on Sn content

    Single nanowire-based UV photodetectors for fast switching

    Get PDF
    Relatively long (30 µm) high quality ZnO nanowires (NWs) were grown by the vapor-liquid-solid (VLS) technique. Schottky diodes of single NW were fabricated by putting single ZnO NW across Au and Pt electrodes. A device with ohmic contacts at both the sides was also fabricated for comparison. The current-voltage (I-V) measurements for the Schottky diode show clear rectifying behavior and no reverse breakdown was seen down to -5 V. High current was observed in the forward bias and the device was found to be stable up to 12 V applied bias. The Schottky barrier device shows more sensitivity, lower dark current, and much faster switching under pulsed UV illumination. Desorption and re-adsorption of much smaller number of oxygen ions at the Schottky junction effectively alters the barrier height resulting in a faster response even for very long NWs. The NW was treated with oxygen plasma to improve the switching. The photodetector shows high stability, reversibility, and sensitivity to UV light. The results imply that single ZnO NW Schottky diode is a promising candidate for fabricating UV photodetectors
    corecore