13 research outputs found

    Uniqueness of near-horizon geometries of rotating extremal AdS(4) black holes

    Get PDF
    We consider stationary extremal black hole solutions of the Einstein-Maxwell equations with a negative cosmological constant in four dimensions. We determine all non-static axisymmetric near-horizon geometries (with non-toroidal horizon topology) and all static near-horizon geometries for black holes of this kind. This allows us to deduce that the most general near-horizon geometry of an asymptotically globally AdS(4) rotating extremal black hole, is the near-horizon limit of extremal Kerr-Newman-AdS(4). We also identify the subset of near-horizon geometries which are supersymmetric. Finally, we show which physical quantities of extremal black holes may be computed from the near-horizon limit alone, and point out a simple formula for the entropy of the known supersymmetric AdS(4) black hole. Analogous results are presented in the case of vanishing cosmological constant.Comment: 18 pages, Latex. v2: footnote added on pg. 12. v3: assumption of non-toroidal horizon topology made explicit, minor clarification

    Charged Black Holes in a Rotating Gross-Perry-Sorkin Monopole Background

    Full text link
    We present a new class of stationary charged black hole solutions to five-dimensional Einstein-Maxwell-Chern-Simons theories. We construct the solutions by utilizing so called the squashing transformation. At infinity, our solutions behave as a four-dimensional flat spacetime plus a `circle' and hence describe a Kaluza-Klein black hole. More precisely, our solutions can be viewed as a charged rotating black hole in a rotating Gross-Perry-Sorkin monopole background with the black hole rotation induced from the background rotation.Comment: 25 pages, 6 figure

    Horava-Lifshitz Holography

    Full text link
    We derive the detailed balance condition as a solution to the Hamilton-Jacobi equation in the Horava-Lifshitz gravity. This result leads us to propose the existence of the d-dimensional quantum field theory on the future boundary of the (d+1)-dimensional Horava-Lifshitz gravity from the viewpoint of the holographic renormalization group. We also obtain a Ricci flow equation of the boundary theory as the holographic RG flow, which is the Hamilton equation in the bulk gravity, by tuning parameters in the theory.Comment: 7 page

    Perturbative instabilities in Horava gravity

    Full text link
    We investigate the scalar and tensor perturbations in Horava gravity, with and without detailed balance, around a flat background. Once both types of perturbations are taken into account, it is revealed that the theory is plagued by ghost-like scalar instabilities in the range of parameters which would render it power-counting renormalizable, that cannot be overcome by simple tricks such as analytic continuation. Implementing a consistent flow between the UV and IR limits seems thus more challenging than initially presumed, regardless of whether the theory approaches General Relativity at low energies or not. Even in the phenomenologically viable parameter space, the tensor sector leads to additional potential problems, such as fine-tunings and super-luminal propagation.Comment: 21 pages, version published at Class. Quant. Gra

    Solution-Processable Low-Molecular Weight Extended Arylacetylenes: Versatile p-Type Semiconductors for Field-Effect Transistors and Bulk Heterojunction Solar Cells

    No full text

    Infrared Spectroscopy

    No full text

    Estimated GFR and the Effect of Intensive Blood Pressure Lowering after Acute Intracerebral Hemorrhage

    No full text
    Background: The kidney-brain interaction has been a topic of growing interest. Past studies of the effect of kidney function on intracerebral hemorrhage (ICH) outcomes have yielded inconsistent findings. Although the second, main phase of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT2) suggests the effectiveness of early intensive blood pressure (BP) lowering in improving functional recovery after ICH, the balance of potential benefits and harms of this treatment in those with decreased kidney function remains uncertain. Study Design: Secondary analysis of INTERACT2, which randomly assigned patients with ICH with elevated systolic BP (SBP) to intensive (target SBP < 140 mm Hg) or contemporaneous guideline-based (target SBP < 180 mm Hg) BP management. Setting & Participants: 2,823 patients from 144 clinical hospitals in 21 countries. Predictors Admission estimated glomerular filtration rates (eGFRs) of patients were categorized into 3 groups based on the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation: normal or high, mildly decreased, and moderately to severely decreased (>90, 60-90, and <60 mL/min/1.73 m2, respectively). Outcomes: The effect of admission eGFR on the primary outcome of death or major disability at 90 days (defined as modified Rankin Scale scores of 3-6) was analyzed using a multivariable logistic regression model. Potential effect modification of intensive BP lowering treatment by admission eGFR was assessed by interaction terms. Results: Of 2,623 included participants, 912 (35%) and 280 (11%) had mildly and moderately/severely decreased eGFRs, respectively. Patients with moderately/severely decreased eGFRs had the greatest risk for death or major disability at 90 days (adjusted OR, 1.82; 95% CI, 1.28-2.61). Effects of early intensive BP lowering were consistent across different eGFRs (P = 0.5 for homogeneity). Limitations: Generalizability issues arising from a clinical trial population. Conclusions: Decreased eGFR predicts poor outcome in acute ICH. Early intensive BP lowering provides similar treatment effects in patients with ICH with decreased eGFRs

    Estimated GFR and the Effect of Intensive Blood Pressure Lowering After Acute Intracerebral Hemorrhage

    No full text
    corecore