1,143 research outputs found
Nonlinear delamination buckling and expansion of functionally graded laminated piezoelectric composite shells
AbstractIn this paper, an analytical method is presented to investigate the nonlinear buckling and expansion behaviors of local delaminations near the surface of functionally graded laminated piezoelectric composite shells subjected to the thermal, electrical and mechanical loads, where the mid-plane nonlinear geometrical relation of delaminations is considered. In examples, the effects of thermal loading, electric field strength, the stacking patterns of functionally graded laminated piezoelectric composite shells and the patterns of delaminations on the critical axial loading of locally delaminated buckling are described and discussed. Finally, the possible growth directions of local buckling for delaminated sub-shells are described by calculating the expanding forces along the length and short axis of the delaminated sub-shells
Effect of selective post-aging treatment on subsurface damage of quasicrystal reinforced Al composite manufactured by selective laser melting
In this work, Al-Fe-Cr quasicrystal reinforced Al matrix composite was in-situ prepared by using selective laser melting from powder mixture of Al-Cu-Fe-Cr quasicrystal and pure Al. The effect of selective post-aging treatment on microstructure and mechanical properties were determined with focus on the metastable phases. The microstructural analysis, which was determined by X-ray diffraction and scanning electron microscopy, indicates that the Al-based intermetallic is precipitated from supersaturated α-Al after the aging process. Moreover, the compression tests were performed on the samples in form of dense and lattice structures (50% porosity). The elastic modules of dense and lattice structural samples reduce from 21.3 GPa and 4.4–14.6 GPa and 3.6 GPa by using a low cooling-rated aging process. After aging process, the compressive deformation behavior of dense part changes from elastic-plastic-fracture mode to elastic-plastic-densification mode. On the other hand, the failure mechanism of lattice structural sample changes from rapid-single-stage to slow-double-stage with an improvement of the strain at failure
Recommended from our members
Reactivity of young chars via energetic distribution measurements
We have developed what we believe to be the very first a priori prediction technique for the gasification reactivity of coal char. With this method the gasification reactivity of a coal char as function of temperature can be predicted from a single temperature programmed desorption (TPD) experiment following mild gasification at a single temperature (Calo et al., 1989; Hall and Calo, 1990a). This approach has been demonstrated for C0{sub 2} gasification of coal chars where the gasification reactivity is controlled by the thermal desorption of oxygen surface complexes formed during gasification. This approach may be extended to other oxidant species, such as steam, and carbon-hydrogen complexes for hydrogen gasification as well. In the current report, we present a summary of the work that has been conducted to date in constructing a new TGA/TPD-MS experimental system which provides us with the capability of simultaneous monitoring of transient sample mass data, as well as gas phase composition during thermal desorption experiments. In addition, we present some steam reactivity data obtained with another TGA (Cahn 113 system) which has been modified for steam gasification experiments
Localization of interacting electrons in quantum dot arrays driven by an ac-field
We investigate the dynamics of two interacting electrons moving in a
one-dimensional array of quantum dots under the influence of an ac-field. We
show that the system exhibits two distinct regimes of behavior, depending on
the ratio of the strength of the driving field to the inter-electron Coulomb
repulsion. When the ac-field dominates, an effect termed coherent destruction
of tunneling occurs at certain frequencies, in which transport along the array
is suppressed. In the other, weak-driving, regime we find the surprising result
that the two electrons can bind into a single composite particle -- despite the
strong Coulomb repulsion between them -- which can then be controlled by the
ac-field in an analogous way. We show how calculation of the Floquet
quasienergies of the system explains these results, and thus how ac-fields can
be used to control the localization of interacting electron systems.Comment: 7 pages, 6 eps figures V2. Minor changes, this version to be
published in Phys. Rev.
Bergman Kernel from Path Integral
We rederive the expansion of the Bergman kernel on Kahler manifolds developed
by Tian, Yau, Zelditch, Lu and Catlin, using path integral and perturbation
theory, and generalize it to supersymmetric quantum mechanics. One physics
interpretation of this result is as an expansion of the projector of wave
functions on the lowest Landau level, in the special case that the magnetic
field is proportional to the Kahler form. This is relevant for the quantum Hall
effect in curved space, and for its higher dimensional generalizations. Other
applications include the theory of coherent states, the study of balanced
metrics, noncommutative field theory, and a conjecture on metrics in black hole
backgrounds. We give a short overview of these various topics. From a
conceptual point of view, this expansion is noteworthy as it is a geometric
expansion, somewhat similar to the DeWitt-Seeley-Gilkey et al short time
expansion for the heat kernel, but in this case describing the long time limit,
without depending on supersymmetry.Comment: 27 page
Confirmation of a pi_1^0 Exotic Meson in the \eta \pi^0 System
The exclusive reaction , at 18 GeV has been studied with a partial wave analysis on a sample
of 23~492 events from BNL experiment E852. A mass-dependent fit
is consistent with a resonant hypothesis for the wave, thus providing
evidence for a neutral exotic meson with , a mass of MeV, and a width of MeV. New
interpretations of the meson exotics in neutral system observed in
E852 and Crystal Barrel experiments are discussed.Comment: p3, rewording the paragraph (at the bottom) about the phase
variations. p4, rewording paragrath "The second method ..." . p4, at the
bottom of paragrath "The third method ..." added consistent with the results
of methods 1 and 2
Cosmological Non-Linearities as an Effective Fluid
The universe is smooth on large scales but very inhomogeneous on small
scales. Why is the spacetime on large scales modeled to a good approximation by
the Friedmann equations? Are we sure that small-scale non-linearities do not
induce a large backreaction? Related to this, what is the effective theory that
describes the universe on large scales? In this paper we make progress in
addressing these questions. We show that the effective theory for the
long-wavelength universe behaves as a viscous fluid coupled to gravity:
integrating out short-wavelength perturbations renormalizes the homogeneous
background and introduces dissipative dynamics into the evolution of
long-wavelength perturbations. The effective fluid has small perturbations and
is characterized by a few parameters like an equation of state, a sound speed
and a viscosity parameter. These parameters can be matched to numerical
simulations or fitted from observations. We find that the backreaction of
small-scale non-linearities is very small, being suppressed by the large
hierarchy between the scale of non-linearities and the horizon scale. The
effective pressure of the fluid is always positive and much too small to
significantly affect the background evolution. Moreover, we prove that
virialized scales decouple completely from the large-scale dynamics, at all
orders in the post-Newtonian expansion. We propose that our effective theory be
used to formulate a well-defined and controlled alternative to conventional
perturbation theory, and we discuss possible observational applications.
Finally, our way of reformulating results in second-order perturbation theory
in terms of a long-wavelength effective fluid provides the opportunity to
understand non-linear effects in a simple and physically intuitive way.Comment: 84 pages, 3 figure
Rare functional variants associated with antidepressant remission in Mexican-Americans: short title: antidepressant remission and pharmacogenetics in Mexican-Americans
Introduction: Rare genetic functional variants can contribute to 30-40% of functional variability in genes relevant to drug action. Therefore, we investigated the role of rare functional variants in antidepressant response. Method: Mexican-American individuals meeting the Diagnostic and Statistical Manual-IV criteria for major depressive disorder (MDD) participated in a prospective randomized, double-blind study with desipramine or fluoxetine. The rare variant analysis was performed using whole-exome genotyping data. Network and pathway analyses were carried out with the list of significant genes. Results: The Kernel-Based Adaptive Cluster method identified functional rare variants in 35 genes significantly associated with treatment remission (False discovery rate, FDR <0.01). Pathway analysis of these genes supports the involvement of the following gene ontology processes: olfactory/sensory transduction, regulation of response to cytokine stimulus, and meiotic cell cycleprocess. Limitations: Our study did not have a placebo arm. We were not able to use antidepressant blood level as a covariate. Our study is based on a small sample size of only 65 Mexican-American individuals. Further studies using larger cohorts are warranted. Conclusion: Our data identified several rare functional variants in antidepressant drug response in MDD patients. These have the potential to serve as genetic markers for predicting drug response. Trial Registration: ClinicalTrials.gov NCT00265291.Ma-Li Wong, Mauricio Arcos-Burgos, Sha Liu, Alice W. Licinio, Chenglong Yu, Eunice W.M. Chin, Wei-Dong Yao, Xin-Yun Lu, Stefan R. Bornstein, Julio Licini
Exotic Meson Production in the System observed in the Reaction at 18 GeV/c
This letter reports results from the partial wave analysis of the
final state in collisions at 18GeV/c.
Strong evidence is observed for production of two mesons with exotic quantum
numbers of spin, parity and charge conjugation, in the decay
channel . The mass MeV/c^2 and
width MeV/c^2 of the first state are consistent
with the parameters of the previously observed . The second
resonance with mass MeV/c^2 and width MeV/c^2 agrees very well with predictions from theoretical
models. In addition, the presence of is confirmed with mass MeV/c^2 and width MeV/c^2
and a new state, , is observed with mass
MeV/c^2 and width MeV/c^2. The decay properties of
these last two states are consistent with flux tube model predictions for
hybrid mesons with non-exotic quantum numbers
- …