872 research outputs found

    Linear magnetoconductivity in an intrinsic topological Weyl semimetal

    Get PDF
    Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion on the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.Comment: An extended version accepted by New. J. Phys. with 15 pages and 3 figure

    Edge states and integer quantum Hall effect in topological insulator thin films

    Get PDF
    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.Comment: 10 pages, 5 figure

    High-field magnetoconductivity of topological semimetals with short-range potential

    Get PDF
    Weyl semimetals are three-dimensional topological states of matter, in a sense that they host paired monopoles and antimonopoles of Berry curvature in momentum space, leading to the chiral anomaly. The chiral anomaly has long been believed to give a positive magnetoconductivity or negative magnetoresistivity in strong and parallel fields. However, several recent experiments on both Weyl and Dirac topological semimetals show a negative magnetoconductivity in high fields. Here, we study the magnetoconductivity of Weyl and Dirac semimetals in the presence of short-range scattering potentials. In a strong magnetic field applied along the direction that connects two Weyl nodes, we find that the conductivity along the field direction is determined by the Fermi velocity, instead of by the Landau degeneracy. We identify three scenarios in which the high-field magnetoconductivity is negative. Our findings show that the high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly and will be helpful for interpreting the inconsistency in the recent experiments and earlier theories.Comment: An extended version accepted by Phys. Rev. B, with 11 pages and 4 figure

    1,5-Bis[1-(2,4-dihy­droxy­phen­yl)ethyl­idene]carbonohydrazide dimethyl­formamide disolvate

    Get PDF
    In the title compound, C17H18N4O5·2C3H7NO, two solvent mol­ecules are linked to the main mol­ecule via N—H⋯O and O—H⋯O hydrogen bonds, forming a hydrogen-bonded trimer. Intra­molecular O—H⋯N hydrogen bonds influence the mol­ecular conformation of the main mol­ecule, and the two benzene rings form a dihedral angle of 10.55 (18)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link hydrogen-bonded trimers into ribbons extending along the b axis

    Molecular Lines of 13 Galactic Infrared Bubble Regions

    Full text link
    We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five molecular lines, 12CO (J=1-0), 13CO (J=1-0), C18O(J=1-0), HCN (J=1-0), and HCO+ (J=1-0), were observed, and several publicly available surveys, GLIMPSE, MIPSGAL, ATLASGAL, BGPS, VGPS, MAGPIS, and NVSS, were used for comparison. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 solar mass, and their dynamic ages are about 0.3-3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four of them have outflow activities. Three bubbles display ultra-compact HII regions at their borders, and one of them is probably responsible for its outflow. In total, only six bubbles show star formation activities in the vicinity, and we suggest that star formation processes might have been triggered.Comment: 55 Pages, 32 figures. Accepted for publication in A

    Dark Aberrant Crypt Foci with activated Wnt pathway are related to tumorigenesis in the colon of AOM-treated rat

    Get PDF
    © 2008 Lu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Effect of Scrophularia ningpoensis extract on diabetes in rats

    Get PDF
    Purpose: To investigate the effect of Scrophularia ningpoensis extract (SNE) on streptozotocin-induced diabetic rats.Methods: SNE was obtained by steeping the dried Scrophularia ningpoensis in water at 60 oC three times, each for 1 h, before first drying in an oven at 100 oC and then freeze-drying the last extract thus obtained. Diabetic rats were prepared by a single intraperitoneal injection of a freshly prepared solution of streptozotocin (50 mg/kg). The rats were randomly divided into 6 groups of ten rats each: negative control group, control group, reference group (glibenclamide1 mg/kgbody weight) as well as SNE groups, (50, 100 and 200 mg/kg). Blood glucose and plasma insulin levels were evaluated in order to determine antihyperglycemic effect. Oxidative stress was evaluated in liver and kidney by antioxidant markers, viz, lipid peroxidation (LPO), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT); blood serum levels of creatinine and urea were determined in both diabetic control and treated rats.Results: Compared with diabetic rats, oral administration of SNE at a concentration of 200 mg/kg daily for 30 days showed a significant decrease in fasting blood glucose to 120.21 ± 3.37 mg/dL (p < 0.05) and increased insulin level to 13.31 ± 0.67 uU/mL (p < 0.05). Furthermore, it significantly reduced biochemical parameters (serum creatinine, 0.86 ± 0.24 mg/dL, p < 0.05) and serum urea (41.86 ± 1.59 mg/dL, p < 0.05).Conclusion: The results suggest that SNE may effectively normalize impaired antioxidant status in streptozotocin-induced diabetes in a dose-dependent manner. SNE has a protective effect against lipid peroxidation by scavenging free radicals and is thus capable of reducing the risk of diabetic complications.Keywords: Scrophularia ningpoensis, Diabetic, Antihyperglycemic, Antioxidant Oxidative stress, Fasting blood glucos

    Determining coupling dynamic stiffness of structural connection by tested FRFs

    Get PDF
    Identifying coupling dynamic stiffness of structural connection is often needed in substructural dynamic analysis. To overcome the faultiness of conventional approaches existed, five indirect schemes of inverse substructuring analysis by using tested frequency response functions (FRFs) are provided. And the first indirect scheme is verified by three mass-rubber models constructed as two-level substructures with mono-coupling, bi-coupling and tri-coupling connection. Compared to existing direct scheme of inverse substructuring analysis, it shows better performance with acceptable precision of determining the stiffness

    Experimental verification on applying indirect inverse substructuring analysis to identify coupling dynamic stiffness of mechanical assembly via planar surface

    Get PDF
    To broaden the engineering application of inverse substructuring analysis, the mechanical assembly via planar surface is experimentally studied. Specifically, the first and the second schemes of indirect inverse substructuring analysis are applied to identify the coupling dynamic stiffness of the assembly. The experimental model of the assembly is designed, and the surface is then discretized equivalently into point-to-point connections for testing the frequency response functions (FRFs) involved in the schemes. Experimental results show that, applying both of the schemes are feasible for the identification, and the identified stiffnesses approach to be stable as the number of discretized points increases

    Coupling dynamic stiffness identification of mechanical assembly with linear connection by the second indirect scheme of inverse substructuring analysis

    Get PDF
    A non-ideal connection of mechanical assembly with linear assembling interface is firstly considered in the coupling dynamic stiffness identification by applying the second scheme of indirect inverse substructuring analysis. The experimental model of the mechanical assembly is designed, and the interface is then discretized equivalently as ideal point-coupling for testing the frequency response functions (FRFs) involved in the scheme. As the results of the experimental study, applying the scheme is verified to be feasible for the stiffness identification of a mechanical assembly with linear connection, and the identified stiffness approaches to be stable with increase of the number of discretized points
    corecore