We investigated the physical properties of molecular clouds and star
formation processes around infrared bubbles which are essentially expanding HII
regions. We performed observations of 13 galactic infrared bubble fields
containing 18 bubbles. Five molecular lines, 12CO (J=1-0), 13CO (J=1-0),
C18O(J=1-0), HCN (J=1-0), and HCO+ (J=1-0), were observed, and several publicly
available surveys, GLIMPSE, MIPSGAL, ATLASGAL, BGPS, VGPS, MAGPIS, and NVSS,
were used for comparison. We find that these bubbles are generally connected
with molecular clouds, most of which are giant. Several bubble regions display
velocity gradients and broad shifted profiles, which could be due to the
expansion of bubbles. The masses of molecular clouds within bubbles range from
100 to 19,000 solar mass, and their dynamic ages are about 0.3-3.7 Myr, which
takes into account the internal turbulence pressure of surrounding molecular
clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular
clouds near four of these bubbles with larger angular sizes show shell-like
morphologies, indicating that either collect-and-collapse or radiation-driven
implosion processes may have occurred. Due to the contamination of adjacent
molecular clouds, only six bubble regions are appropriate to search for
outflows, and we find that four of them have outflow activities. Three bubbles
display ultra-compact HII regions at their borders, and one of them is probably
responsible for its outflow. In total, only six bubbles show star formation
activities in the vicinity, and we suggest that star formation processes might
have been triggered.Comment: 55 Pages, 32 figures. Accepted for publication in A