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Abstract
Searching for the signature of the violation of chiral charge conservation in solids has inspired a
growing passion for themagneto-transport in topological semimetals. One of the open questions is
how the conductivity depends onmagnetic fields in a semimetal phasewhen the Fermi energy crosses
theWeyl nodes.Here, we study both the longitudinal and transversemagnetoconductivity of a
topologicalWeyl semimetal near theWeyl nodes with the help of a two-nodemodel that includes all
the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th
Landau bands inmagnetic fields. For afinite potential range of impurities, it is found that both the
longitudinal and transversemagnetoconductivity are positive and linear at theWeyl nodes, leading to
an anisotropic and negativemagnetoresistivity. The longitudinalmagnetoconductivity depends on
the potential range of impurities. The longitudinal conductivity remains finite at zerofield, even
though the density of states vanishes at theWeyl nodes. This work establishes a relation between the
linearmagnetoconductivity and the intrinsic topologicalWeyl semimetal phase.

1. Introduction

Searching for the violation of chiral charge conservation in solids startedwithNielsen andNinomiya’s proposal
in 1983 [1], inwhich the chiral charge is not conserved in a 1D systemof two bandswith opposite chirality. To
simulate the 1D chiral bands, they proposed to use the lowest Landau bands of a 3D semimetal, and expected
that the longitudinalmagnetoconductance becomes extremely strong. Recently, thanks to the discovery of a
number of realisticmaterials of topological semimetals [2–21], there is a growing passion on their electronic
transport [22–30] and signatures of the chiral anomaly [31–35].

Earlier theories on the longitudinalmagnetoconductivity arrived at various results [36–43]. In the
semiclassical limit, where the Landau levels are notwell formed, a positiveB2magnetoconductivity was
predicted [36, 37], and has recently been under intensive experimental investigation [44–51]. In the semiclassical
approaches, the Fermi energy should overwhelm the relaxation rate, not exactly at theWeyl nodes. TheB2

magnetoconductivity is also obtained bymodeling the disorder as long-range charged impurities in the
quantum limit [41]. In the scenario similar to that proposed byNielsen andNinomiya, different results have
been obtained so far, depending onmodels and treatments [37–41]. Literally, a semimetalmust have a Fermi
energy crossing theWeyl nodes. Nevertheless, little attention is paid to themagnetoconduction in the exact
semimetal phase.More importantly, theWeyl nodes always appear in pairs. The intrinsic connection of the
Weyl nodes and the inter-node scattering are two factors to affect the transport properties because the chiral
anomaly occurs between twoWeyl nodes.

In this work, we start with a two-nodemodel to investigate both the longitudinal and transverse
magnetoconductivity of aWeyl semimetal near theWeyl nodes. Themodel describes a pair of Weyl nodes, and is
solvable in the presence ofmagnetic fields. The scattering potential of the impurities ismodeled by using a
randomGaussian potential, inwhich the range of potentialmay vary in realisticmaterials. As long as the
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potential range isfinite, we show that the longitudinalmagnetoconductivity is positive and linear inmagnetic
field, giving rises to a negativemagnetoresistance. As thefield goes to zero, we have afiniteminimum
conductivity, even though the density of states (DOS) vanishes at theWeyl nodes. In the transverse
magnetoconductivity, wefind a crossover from linear-B dependence in the short-range potential limit to B1
dependence in the long-range potential limit.

The paper is organized as follows.Wefirst introduce the two-nodemodel and present the solution of the
Fermi arcs in section 2.We then discuss themagnetic field-inducedDOS and chiral anomaly in section 3. In
sections 4 and 5, the formulas and analysis of the longitudinal and transversemagnetoconductivities in the
presence of the randomGaussian potential are given, respectively.We also discuss the paramagneticWeyl
semimetal in section 6. The conclusions are given in section 7. The detailed calculations are provided in appndix
A–C.

2. Two-nodemodel ofWeyl semimetal and Fermi surfaces

Wedescribe the topological semimetal with a two-nodemodel [40],

( ) ( ) ( ) ( )s s s= + + - - -H A k k M k k k kk , 1x x y y c x y z z
2 2 2 2

where sx y z, , are the Paulimatrices, ( )= k k kk , ,x y z is thewave vector, andA,M and kc aremodel parameters.
Themodel is in the topological semimetal phase and describes a pair of 3D gapless Dirac cones, with twoWeyl
nodes located at ( )= kk 0, 0, c inmomentum space [see figure 1(a)]. The topological properties of the two-
nodemodel can be examined by the Berry curvature, Chern number and Fermi arcs [40, 52]. A topological
semimetal has the kz-dependent topologically protected surface states for a specific kz between the twoWeyl
nodes. This is demonstrated by a non-zero Chern number as a function of kz, ( ) ( )=N k Msgnc z for ∣ ∣ <k kz c ,
and 0 for ∣ ∣ >k kz c . According to the bulk-edge correspondence, there a exist surface (or edge) states around the
surfaces parallel to the ẑ direction. The solution of the surface states can be found from the two-nodemodel
explicitly by following the solution to the two-dimensionalmodifiedDirac equation that describes the quantized
anomalous/spinHall effects [53].

Supposewe have a semi-infinite system in the half plane y 0with open boundary conditions andwith
translational symmetry along the x̂ and ẑ directions, as shownby figure 1(d). kx and kz are still good quantum

Figure 1.The energy spectrumof the bulk states (a) and the surface states at the y= 0 surface (b) of the topologicalWeyl semimetal. (c)
Both the bulk and surface states. (d)The real-space schematic of the topologicalWeyl semimetal and its surface states.We asusme that
the x̂ and ẑ directions are infinitely long. The lines with arrows in the y= 0 (red) plane indicate that the chiral surface states travel
along only one direction. In contrast, a topological Dirac semimetal hosts helical surface states that travel along both the x̂ and ˆ-x
directions. Parameters: =k 0.1c /nm,M= 5 eV nm2, andA= 1 eV nm.
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numbers but ky is replaced = - ¶k iy y in theHamiltonian (1).We can assume a trial wavefunction for each set of
k k,x z as

( )y
y
y

=l
l+

⎡
⎣⎢

⎤
⎦⎥e e . 2k x k z yi i 1

2

x z

Substituting the trial wavefunction into the eigen equation ( )y y- ¶ =l lH k k E, i ,x y z , we have the secular
equation for the eigen energies

∣ ( ) ∣ ( )l- - =H k k Edet , i , 0, 3x z

which gives four solutions of ( )l E , denoted as blawith b = , a = 1, 2, and

( ) ( )
( )

( )l = -
- - +

+
- D

a
aE

A A M k k M E

M

A M

M
1

4 4

2

2

2
, 4c z k2

4 2 2 2 2 2 2

2

2 2

2

whereD = - -k k kk c x z
2 2 2. Each ( )bla E corresponds to a spinor state

( )
( )

( )y l
bl

=
D + +

+
ab

a

a

⎡
⎣⎢

⎤
⎦⎥

M E

A k
, 5k

x

2

or

( )
( )

( )y
bl
l

=
-

- D + +
ab

a

a

⎡
⎣⎢

⎤
⎦⎥

A k

M E
. 6

x

k
2

The general wavefunction in the ŷ direction can then bewritten as a superposition of the spinor states

( ) ( )å yY =
a b

ab ab
bl

= =

aE y C, e , 7k k
y

,
1,2,

x z

where the eigen-energy E as well the coefficients abC are to befind from the boundary conditions.
We now apply the open boundary conditions: ( ) ( )Y -¥ = Y =E E, , 0 0k k k k, ,x z x z

. The former condition
( )Y -¥ =E, 0k k,x z

requires thatΨ contains only the termswith positive β and ( )l >aRe 0 (or negative β and
( )l <aRe 0) and thus = =- -C C 01 2, . According to equation (4), this condition can only be satisfied in two

cases: (i) l > 01,2 , and (ii) l = a bi1,2 with >a b, 0 (Note that l l=1 2 corresponds to a trivial case). The
later condition ( )Y =E, 0 0k k,x z

then gives a secular equation

( )y y =+ +det 0 81 2

to determine +C1 and +C2 . Substituting equations (5) and (6) into equation (8), respectively, and considering
l l¹1 2, we arrive at

( ) ( ) ( )l l l l= - D - + +E M Mk , 9k x1 2 1 2

( ) ( ) ( )l l l l= D - + +E M Mk , 10k x1 2 1 2

which lead to

( )l l = D . 11k1 2

On the other hand, according to equation (4), we have

( ) ( )l l = - + DA k E M , 12x k1
2

2
2 2 2 2 2 2

( )l l+ = - DA M 2 . 13k1
2

2
2 2 2

Substituting equation (11) into equation (12), we have immediately

=E A k .x
2 2 2

Using equations (11) and (13) and keeping inmind that in both the cases (i) and (ii), l l+ > 01 2 , wemust have
∣ ∣l l+ = >A M 01 2 . Herewe assume >A 0without loss of generality. Putting this result into equation (9),

the dispersion of the surface states isfinally given by

( ) ( ) ( )=E k k M Ak, sgn . 14x z xarc

The correspondingwavefunction can be simplified as

( ) ( ) ( ) ( )Y = -l l+ ⎡
⎣⎢

⎤
⎦⎥C

M
r e

sgn

1
e e , 15k k

k x k z y y
,

arc i i
x z

x z 1 2

whereC is a normalization factor and ∣ ∣ ( )l = - DA M A M2 2 k1,2
2 . At the surface of y= 0, the surface

states are eigenstates of sx with a uniform effective velocity, ( ) =v M Asgneff . Thus they are chiral surface
states around the surface parallel with the ẑ direction. Also in both cases (i) and (ii), we have l l > 01 2 and
henceforthD > 0k . Therefore the solution of Fermi surface states is restricted inside a circle defined by
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+ <k k kx z c
2 2 2, as shownby figures 1(b) and (c). At zero Fermi energy, i.e., =k 0x , the surface states exist for all

∣ ∣ <k kz c which produces a Fermi arc connecting twoWeyl nodes. For a non-zero Fermi energy, the ends of the
Fermi arc are shifted away from theWeyl nodes until they vanish.

3. Field-induced density of states and chiral anomaly

After showing that the two-nodemodel is capable of capturing all the topological properties, nowwe are ready to
demonstrate its transport properties arising from its chiral properties. It is well known that theDOS of aWeyl
semimetal vanishes at theWeyl nodes, following aE2 dependence. This can also be captured by the two-node
model inwhich theDOS at small energy E is given by

( ) ( )
p

=N E
E

A Mk2
, 16

c

2

2 2

as shown infigure 2 (see appendix A for the general formulas of theDOS).When the Fermi energy locates right at
theWeyl nodes, theDOS is exactly zero. At this exact semimetal phase, it is expected to have exotic electronic
transports at zero temperature. It is found that afiniteDOS can be generated by amagnetic fieldB along the
direction that connects the twoWeyl nodes, i.e., a ẑ-directionmagnetic field in the present work. The
ẑ-directionmagnetic field can split theDirac cones into a bundle of 1Dbands of Landau levels dispersing with kz
[19, 40, 54], as shown infigure 2. Figure 2 shows how theDOS in the absence of themagnetic field evolves into a
set of diverging peaks in the presence of themagnetic field. The divergence is due to the vanHove singularity at
the band edges of the 1DLandau bands.

In the presence of amagnetic field in the ẑ direction, the energies of electrons form a set of Landau bands
dispersingwith kz as following [40]

Figure 2.Top left: the energy spectrumof aWeyl semimetal as a function of kz at = =k k 0x y . Top right: the Landau bands of the
Weyl semimetal in a ẑ-directionmagnetic field (B= 0.1 T). The 0th Landau bands are in red. Bottom: theDOS in the absence and
presence of the ẑ-directionmagneticfield. The circles indicate theDOS at theWeyl nodes, which grows linearly with themagnetic
field. Parameters: =k 0.1c /nm,M= 5 eV nm2, andA= 1 eVnm.
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( )

 w nh n

w n

=  +

= - + =

n
n

E

E Mk Mk

2 , 1

2 , 0 17

k

k c z

2 2

0 2 2
z

z

where wn= - -n Mk Mkc z
2 2 , ℓh = A2 B and ℓw = M2 B

2. ℓ ∣ ∣º eBB is themagnetic length. Each
Landau band has the Landau degeneracy ℓ ∣ ∣p= =N eB h1 2L B

2 in a unit area in the x-y plane.
In themagnetic field, theDOSnear theWeyl nodes is given by

ℓ
( ) ( )

p w
=

+ -
N E

M E Mk

1

4

1

2
, 18

B c
2 2 2

which is contributed by the 0th Landau bands. At theWeyl nodes, theDOS reduces to
ℓ( ) ( )p p= ´N Mk1 2 1 2k c B

2
c

, which grows linearly with the Landau degeneracy ∣ ∣=N eB hL and hence the
magnetic fieldB. This resultingDOS leads to a semimetal tometal transition, which is under intensive
investigation in the context of the disorder-inducedDOS [55–59], instead of in the presence ofmagnetic field.

In the ẑ-directionfield, the Fermi energy crosses with the 0th Landau bands at kc and-kc, where the Fermi
velocities are opposite, i.e., = v Mk2F c . This chiral property of the 0th bands is exactly the scenario
required inNielsen andNinomiya’s proposal for the chiral anomaly [1]. As an electric field is applied along the
Weyl node direction, the changing rates of charge carriers are ( )p= N t ev Ed d 2F near the twoWeyl nodes
at = k kz c, respectively. Thus charges can be pumped fromnear kc to-kc, literally leading to the non-
conservation of chiral charge, i.e., the chiral anomaly [31]. Later, wewill focus on the electronic transport in this
situationwhen the chiral anomaly happens. In the following discussions, wewill constrain to the case near the
Weyl nodes, i.e., the Fermi energy is located between two Landau bands of 1 , and at very low
temperatures,  w hk T ,B .

4. Longitudinalmagnetoconductivity

At sufficiently low temperatures, i.e.,  w hk T ,B , and not far away from theWeyl nodes, the electronic
transport can be effectively conducted by the 0th bands of Landau levels.When the electric andmagnetic fields
are in parallel with each other, the changing rate of density of charge carriers near one node ismaximal according
to the picture of chiral anomaly. In this case, the semiclassical conductivity of the 0th Landau bands can be found
with the help of the standardGreen function formulism [40]. Alternatively, it can be simply figured out by using
the Einstein relation s = e N D,zz F

2 where theDOS can be found as the Landau degeneracy times theDOS of one-
dimensional systems, i.e., ℓ( ) ( )p p= ´N v1 2 1F B F

2 . t=D vF k
2 0,tr

F
is the diffusion coefficient in one

dimension. tk
0,tr

F
is the transport time, vF is the Fermi velocity in the ẑ direction and =k v M2F F is the Fermi

wave number. For the scattering among the states on the Fermi surface of the 0th Landau bands, the transport
time can be found as

∣ ∣ ( ) ( ) åt
p d= á ñ - -

¢ ¢
¢ ¢ ¢

¢⎛
⎝⎜

⎞
⎠⎟U E E

v

v
2 1 , 19

k k k
k k k k F k

k
z

F
0,tr

,
, ; ,

0,0 2 0 0,

F x z

x F x z z

z

where ¢ ¢U
k k k k, ; ,
0,0
x F x z

represents the scatteringmatrix elements and á ñ... means the impurity average (see appendix C
for details).

The transport time tk
tr0,

F
is sensitive to the scattering potential inmaterials. One of the convenient choices is

the randomGaussian potential

( )
( )

( )∣ ∣å
p

= - -U
u

d
r

2
e , 20

i

i dr R
3

2i
2 2

where uimeasures the scattering strength of a randomly distributed impurity at Ri, and d is a parameter that
determines the range of the scattering potential. TheGaussian potential allows us to study the effect of the
potential range in a controllable way, whichwefind it crucial in the present study. Nowwe have two
characteristic lengths, the potential range d and themagnetic length ℓB, which define two regimes, the long-
range potential regime ℓd B and the short-range potential limit ℓd B. Note that, for a given d in realistic
materials, varying themagnetic field alone can cross between the two regimes. Empirically, themagnetic length
ℓB = 25.6 nm / ∣ ∣B withB in Tesla. In the strong-field limit, e.g., >B 10 T, themagnetic length ℓB becomes
less than 10 nm, it is reasonable to regard smooth fluctuations inmaterials as long-range.

With the randomGaussian potential, we can find the transport time as well as the conductivity. In particular,
at theWeyl nodes the transport time is obtained as (see appendix B.1 for details)

ℓ
( )

t p
=

+

-V

Mk d2

e

2
, 21

k c

d k

B
0,tr

imp
4

2 2
c

c
2 2
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and hence the longitudinal conductivity

ℓ
ℓ

( ) ( ) ( ) ( )s =
+

B
e

h

Mk d

V

2 2
e , 22zz

c B

B

d k
2 2 2 2

imp
2

4 c
2 2

where º åV u Vi iimp
2 measures the strength of the scattering and =V L L Lx y z is the volume of the system.

Lx y z, , are the sizes of the system along the x̂, ŷ and ẑ directions, respectively. This conductivity is generated by
the inter-node scatteringwith amomentum transfer of 2kc. As themagnetic field goes to zero, themagnetic
length diverges and ℓ d 0B , and equation (22) gives aminimumconductivity

( ) ( ) ( )s =
e

h

Mk

V
0

4
e , 23zz

c d k
2 2

imp

4 c
2 2

even though theDOS vanishes at theWeyl nodes at zeromagnetic field. A similar result was found in the absence
of the Landau levels [58].

According to d, we have two cases. (1) In the short-range limit, d= 0, then szz does not depend on the
magnetic field, giving a zeromagnetoconductivity, which recovers the result for the delta potential [40, 41]. (2)
As long as the potential range isfinite, i.e., >d 0, we can have amagnetoconductivity. Using equation (22),

( ) ( ) ( )
( )

( )s
s s

s
D º

-
=B

B B

B

0

0
, 24zz

zz zz

zz 0

where =B ed20
2. Thus themagnetoconductivity is given by the range of impurity potential, and

independent of themodel parameters. Thismeans that we have a positive linear ẑ-directionmagnetoconductiv-
ity for theWeyl semimetal. Afinite carrier density n0 can drive the system away from theWeyl nodes, then kc in
equation (22) is to be replaced by ℓ( ) p= +k k M nsgn 2F c B

2 2
0. Thefinite n0 can vary the linear-B dependence,

but a strongmagnetic field can always squeeze the Fermi energy to kc, and recover the linear
magnetoconductivity.

A linear-Bmagnetoconductivity arising from the Landau degeneracy has been obtained before [37, 39],
based on the assumption that the transport time and Fermi velocity are constant. However, in the present case,
we have taken into account themagnetic field dependence of the transport time, and thus theB-linear
magnetoconductivity here has a differentmechanism as a result of the interplay of the Landau degeneracy and
impurity scattering. Also, in the presence of the charged impurities, aB2magnetoconductivity can be found in
the quantum limit [41]. AB2magnetoconductivity can also be found in the semiclassical limit [36, 37].

5. Transversemagnetoconductivity

When electric andmagnetic fields are perpendicular to each other, the changing rate of density of charge carriers
near each node vanishes. In this case, because the Landau bands in the ẑ-directionmagnetic field only disperse
with kz, the effective velocity along the x̂ direction = ¶ ¶ =v E k 0x x0 . The leading-order x̂-direction
conductivity arises from the inter-band velocity and the scatterings between the 0th bandswith the bands of 1 ,
which are higher-order perturbation processes. Thus the transverse conductivity is usuallymuch smaller than
the longitudinal conductivity.

When the Fermi energy crosses only the 0th bands, the leading-order conductivity is given by [60]

( ) ( ) ( )

( ) ( ) ( ) å

s s s

s
p

= +

=

+ -


  

B B B

B
e

V
G v G v

,

Re , 25

xx xx xx

xx
k k

k
R x

k
A x

2

,
0, 0,1 1 , 1 ,0

x z

z z

where ( ) t= - +G E E1 i 2k
R

F k k0,
0 0

z z z
is the retardedGreen’s function of electrons in the 0th bands,

( )  t= -
 G E E1 i 2k

A
F k k1 ,

1 1
z z z

are the advancedGreen functions of electrons in the 1 bands, respectively.

tk
0

z
and t 

k
1

z
are the corresponding lifetimes. The inter-band velocities along the x̂ direction v x

0,1 are given by

ℓ ( )


h
q

w
q

= ++

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

2
cos

2
sin

2
, 26x B k k

0,1

1 1
z z

ℓ ( )


h
q

w
q

= --

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

2
sin

2
cos

2
, 27x B k k

0,1

1 1
z z

where  q h= +cos k
1

1 1
2 2

z
. Considering that Fermi energy crosses only the 0th bands and that  tk

0
z

and  t 
k
1

F
are very small, equation (25) can be simplified to
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( ) ∣ ∣
( )

( )
( ) ås

d

t
=

-

-


  B
e

V
v

E E

E E 2
. 28xx

k k

x F k

F k k

2

,
0,1

2
0

1 2 1
x z

z

z z

The lifetimes due to the randomGaussian potential can be calculated by using the Born approximation,

∣ ∣ ( ) ( ) å
t

p d= á ñ -
¢ ¢

¢ ¢


¢U E E2 . 29
k k k

k k k k F k1
,

, ; ,
1 ,0 2 0

F x z

x F x z z

After lengthy but straightforward calculations, they can be obtained as (see appendix B.2 for details)

ℓ
ℓ( )

( ) ( )

t p
q=

+
+

-V

v d16

1 e

2
1 cos . 30

k

B

F

d k

B
k1

imp
2 4

2 2 2
1

F

F

F

2 2

The substitutions of equations (26) and (27) for v x
0,1 and of the results (30) for t 

k
1

F
into equation (28) give

ℓ
ℓ

( ) ( )
( )

( ) ( )s
p

=
+
+

-
B

e

h

V

v d
k

4

1 e

2
, 31xx

F

B
d k

B
F

2
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2 2

2 4

2 2 2

F
2 2

where

ℓ
( )

( )

( )

( )

( )
( )

 


q q

=
-

+
-

+

+

-

-

⎡

⎣
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⎤

⎦
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k

v

E E

v

E E

1
sin

2
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2 . 32z
B

x k

k k

x k

k k
2

0,1
2 2

1

0 1, 2

0,1
2 2

1

0 1, 2

z

z z

z

z z

When the Fermi energy is at theWeyl node, the transverse conductivity sxx at theWeyl nodes is given by

ℓ
ℓ

( ) ( )
( )

( )s
p

=
+
+

-
B

e

h

V

M k d16

1 e

2
, 33xx

c

B
d k

B

2
imp

2 2 2

2 4

2 2 2

c
2 2

where ( ) ( ) w h w h= + +2 4 42 2 2 2 , so  » 1 2 in the strong-field limit (ℓ  M AB ) and  » 1 4 in the
weak-field limit (ℓ  M AB ).We choose the value ofVimp so that the band broadening is alwaysmuchweaker
than the spacing between the 0th and 1st Landau bands for an arbitrarymagnetic field. It is safe to assume that
only the 0th Landau band contributes to the conductivity at halffilling. There are three cases as shown infigures 3
(d)-(f). At d= 0, sxx reduces to the result for the delta potential and s µ Bxx , a linearmagnetoconductivity as szz ,
butmuch smaller [40]. In the long-range potential limit ℓd B, we have s ~ B1xx , which gives a negative
magnetoconductivity. For afinite potential range d, wewould have a crossover of sxx fromB-linear to B1
dependence. Alternatively, as shown infigure 3 (e), for afinite d (=5 nm) comparable to themagnetic length ℓB,
we have a crossover of sxx from a linear-B dependence inweak fields to a B1 dependence in strong fields.While
at d= 0 and ℓd B, we have the two limits as shown infigures 3 (d) and (f), respectively. For shorter d, a larger
criticalmagnetic field for the crossover is needed. Figure 3 also shows that the conductivity is larger for shorter d,
so the B1 transversemagnetoconductivity in the long-range limitmay not survive when there are additional
short-range scatters.

In particular, infigure 3 (f), s µ B1xx in the long-range potential limit. In thefield perpendicular to the
-x y plane, there is also aHall conductivity ( )( )s p= +M k e h en Bsgnyx c

2
0 , where thefirst term is the

anomalousHall conductivity and the second term is the classical conductivity. Inweak fields, the classicalHall
effect dominates, then both sxx and syx are proportional to B1 , and the resistivity ( )r s s s= +xx xx xx yx

2 2 is
found to be linear inB. Note that here the linearMR in perpendicular fields has a different scenario compared to

the previousworks [61, 62]. Abrikosov used theHamiltonian ·
 svk with linear dispersion andmodelled the

disorder by the screenedCoulomb potential under the randomphase approximation [61]. Song et al discussed a
semiclassicalmechanism [62].

6. ParamagneticWeyl semimetal

The existence of the non-zero Chern number or chiral surface states indicates the time reversal symmetry
breaking in the two-nodemodel in equation (1). Correspondingly a quantumanomalousHall conductance
appears. To have a paramagneticWeyl semimetal, we have to introduce a time reversal counterpart for the two
Weyl nodes in equation (1). A straightforward extension is as follows

( ) ( ) ( )a a b= + + -H A k k M k k , 34x x y y c
2 2

where theDiracmatrices are a s s= Äx x x , a s s= Äy x y, b s s= Ä z0 . It contains fourWeyl nodes, which
are doubly degenerate. The surface electrons around the ẑ direction consist of two branches with opposite spins
and opposite effective velocities. It will give rise to the quantum spinHall effect, compared to the quantum
anomalousHall effect in aWeyl semimetal of a single pair of nodes. The dispersions of two branches of the 0th

7

New J. Phys. 18 (2016) 053039 S BZhang et al



bands are ( ) ( )w=  - +E k Mk Mk2z c z
2 2 . In aweakmagnetic field, themagnetoconductivity is also linear in

magnetic field, as that forWeyl semimetal in equation (1). However, for a strong field, the strongfield dependent
Fermi energy will give a different field dependence of conductivity as the two 0th bands shift away from each
other as increasing field. Finally it is worthy pointing out that this kind of semimetals is different from a simple
Dirac semimetal described by a pair of degenerate Dirac cones,

svk (e.g., at the phase transition point between
a 3D topological insulator and trivial insulator), inwhich there does not exist the surface states as the two nodes
are not separated inmomentum space and themodel is topologicallymarginal. Also, the Zeeman effectmay also
contribute to a linear contribution to themagnetoconductivity [63]. But its sign depends on the g-factor of
sample and usually itsmagnetoconductivity is negative, opposite to that in this work.

7. Conclusions and discussion

The key conclusion of the present work is the positive and linearmagnetoconductivity ofWeyl semimetals near
theWeyl nodes. The Fermi energy is assumed to cross only the 0th Landau bands of the semimetal at low
temperatures (  wEF and  wk TB ). Themagnetoconductivity depends on the types of scattering potentials,
inwhich the potential range is a characteristic parameter. Our conclusion is different from the theoretical
predictions of the positiveB2magnetoconductivity in several previous works [36, 37], because where higher
Fermi energies ( E k TF B ) and  wtk

0,tr
F

were assumed, therefore thereweremanymore Landau bands on

Figure 3.The longitudinal conductivity szz and transverse conductivity sxx of theWeyl semimetal in the ẑ-directionmagnetic fieldB
for different potential ranges. The shared parameters: =k 0.1c /nm,M= 5 eV nm2,A= 1 eV nm, ( )=V eV10 nmimp

2 3.
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the Fermi surface. Recently, a positive longitudinalmagnetoconductivity has been observed in several different
candidates of topological semimetal [44–51], andwas claimed to be related to the chiral anomaly.We believe
that the linear term is one of the indispensable ingredients in the formula of themagnetoconductivity in the
intrinsicWeyl semimetal phase.Whenmore Landau levels come into play as the Fermi energy is shifted from
near theWeyl nodes, themagnetoconductivity is expected to deviate from linear.

The result of themagnetoconductivity is based on the Born approximation.When themagnetic length
becomesmuch shorter than the range of the disorder potential, electronsmay be scattered by the same impurity
formultiple times. The Born approximation contains the correlation of two scattering events by the same
impurity [64]. In this situation, the validity of the Born approximationwas questioned in two dimensions
[65, 66]. In three dimensions, it is still unclear whether the correlation of two scattering events in the Born
approximation is the building block for themultiple scattering under extremely strongmagnetic fields [62, 67].
So far, theories in three dimensions employ the Born approximation, e.g., the quantum linear
magnetoresistance [61]. The treatment beyond the Born approximationwill be a challenging topic for three-
dimensional systems under extremely strongmagnetic fields.
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AppendixA.Density of states

A.1. In the absence ofmagneticfield
In the absence ofmagnetic field, theDOS can be calculated as ( ) ( ( ) )d= å -=N E E E Vki ik, . After the
straightforward calculations, the results ofDOS are summarized as followings.

If A M k2 c
2 2 2, the results ofDOS are given by

( )
( ) ∣ ∣
( ) ∣ ∣

( )





p

=
>

⎪

⎪

⎧
⎨
⎩N E

E

AM

E E Mk

E E Mk4

,

,
A.1c

c
2

1
2

2
2

where

( )
( )

( )
( ) =

+ + +

- + -
E

A M Mk E A ME

A M Mk E A ME
ln

2 2

2 2
, A.2c

c

1

2 2

2 2

( )
( )

( ) =
+ + +

+ -
E

A M Mk E A ME

M E A A M k
ln

2 2

4 4
. A.3c

c

2

2 2

2 2 4 2 2 2

If <A M k2 c
2 2 2, theDOS is instead given by

( )
( ) ∣ ∣
( ) ( ) ∣ ∣
( ) ( ) ∣ ∣

( )


 

 




p
= + <

+ >

⎧
⎨⎪

⎩⎪
N E

E

AM

E E A M

E E A M E Mk

E E E Mk
4

, 2

, 2

,

A.4c

c

2

1
2

1 3
2 2

2 4
2

where

( ) ( ) =
- + -

- -
E

A M k A M E A

A M k A M E
ln

4 2 4

4 4
, A.5c

c

3

2 2 2 2 2 4

2 2 2 4 2 2

( ) ( ) =
- + -

+ -
E

A M k A M E A

M E A A M k
ln

4 2 4

4 4
. A.6c

c

4

2 2 2 2 2 4

2 2 4 2 2 2

For a small energy E Mk A M, 2c
2 2 (in both the cases >A M k2 c

2 2 2 and <A M k2 c
2 2 2), theDOS can be

simplified as

( ) ( )
p

=N E
E

A Mk2
. A.7

c

2

2 2
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A.2. In the presence ofmagneticfield
In the presence ofmagnetic field, theDOS can be calculated as ℓ( ) ( ) ( )p d= å -n

n
=N E L E E1 2 B z k s k

s2
, ,z z

.
Summing over kz and = s ,N(E) can bewritten as

ℓ
( ) ∣ ∣

( ) ( )

( ) ( )
( )

 

 

å

å

w
p nw

nw

=
-

- +

+
- -

n n n

n n n

=

=

+

-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

N E
E

M E Mk E

E Mk E

2

4

1 1

1 1
, A.8

B

N

c

N

c

2 2
0

2

0
2

where ( ) ( ) w nh= - -n E E 2 2 2 and N are the largest integers forwhich ( )nw-  nMk Ec
2 are positive,

respectively.
In the quantum limit, only the n = 0 term is retained andN(E) reduces to

ℓ
( ) ( )

p w
=

+ -
N E

M E Mk

1

4

1

2
, A.9

B c
2 2 2

which is approximately proportional to themagnetic field.

Appendix B. Lifetimes and transport times

B.1. Transport time tk
0,tr

F

The transport time tk
0,tr

F
at the Fermi surface is calculated as

∣ ∣ ( ) ( ) åt
p d= á ñ - -

¢ ¢
¢ ¢ ¢

¢⎛
⎝⎜

⎞
⎠⎟U E E

v

v
2 1 . B.1

k k k
k k k k F k

k
z

F
tr

,
, ; ,

0,0 2 0 0,

F x z

x F x z z

z

Using ( ) [ ( ) ( )] d d d- = - ¢ + + ¢¢E E k k k k vF k F z F z F
0
z

and substituting the expressions equation (C.16) for the
scatteringmatrix elements ∣ ∣á ñ¢ ¢U

k k k k, ; ,
0,0 2
x z x z

,

( ) ( )

( )[ ( ) ( )] ( )

ℓ

 òåt
d

d d d

= á ñ + ¢ -

´ + ¢ - ¢ + + ¢ - -

¢ ¢

-

¢

^

⎛
⎝⎜

⎞
⎠⎟

v L L
U q k k

q k k k k k k
v

v

q
q

1 d
e

1 . B.2

k F k k x z

q
x x x

z z z z F z F
k

z

F

tr
,

3
2

imp
2

0,

F x z

B

z

2 2

where = +q̂ q qx y
2 2 2. Changing the summations over ¢ ¢k k,x z to integrals, equation (B.2) can be simplified as

( )
( ) ( )ℓ

 òt p
= á ñ - ^

v

q q
U q q k

2 d d

2
, , 2 e . B.3

k F

x y
x y F

q
tr 2

2
imp

2

F

B
2 2

The substitution of the Fourier transformof the potential ( ) = -U uq ei i
q d 22 2

gives

( )
( )ℓ( )

 òt p
= - + -^

V

v

q q2 d d

2
e e , B.4

k F

x y q d d k
tr

imp

2
2 4

F

B F
2 2 2 2 2

where º åV u Vi iimp
2 . Performing the integral in polar coordinates andwefinally obtain

ℓ( )
( )

t p
=

+

-V

v d

e

2 2
. B.5

k F

d k

B
tr

imp
4

2 2
F

F
2 2

B.2. Lifetimes t 
k
1

F

Weassume that the impurity scattering is soweak thatwhen the Fermi energy crosses only the 0th landau bands,
the leading order of the lifetimes t 

k
1

F
of the states in the 1 Landau bands can be found as

∣ ∣ ( ) ( ) å
t

p d= á ñ -
¢ ¢

¢ ¢


¢U E E2 . B.6
k k k

k k k k F k1
,

, ; ,
1 ,0 2 0

F x z

x F x z z

Substituting equation (C.23) for the scatteringmatrix elements ∣ ∣á ñ¢ ¢
U

k k k k, ; ,
1 ,0 2

x F x z
and then using

( ) [ ( ) ( )] d d d- = - ¢ + + ¢¢E E k k k k vF k F z F z F
0
z

, we have
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ℓ ( )
( )

[ ( ) ( ) ] ( )

ℓ

 òt
q

p
=

´ á ñ + á ñ

 -¥

¥

^
- ^

v

q q
q

U q q U q q k

4
1 cos

d d

2
e

, , 0 , , 2 . B.7

k

B

F
k

x y q

x y x y F

1

2
1

2
2 2

2
imp

2
imp

F

F
B
2 2

Substituting the Fourier transformof theGaussian potential and then performing the integrals, equation (B.7)
become

ℓ
ℓ( )

( ) ( )
( )



t p
q=

+
+

-V

v d16

1 e

2
1 cos . B.8

k

B

F

d k

B
k1

imp
2 2

2 2 2
1

F

F

F

2 2

In the strong-field limit ℓ  0B , ( )q  - Mcos sgnk
1

F
. Suppose >M 0, then in the strong-field limit,

 t =- 0k
1

F
while

ℓ
ℓ( )

( )
( )

t p
=

+
++

-V

v d8

1 e

2
. B.9

k

B

F

d k

B
1

imp
2 2

2 2 2
F

F
2 2

AppendixC. Scatteringmatrix elements

To evaluate the square of the scatteringmatrix elements under the average of impurity configurations, we need
to calculate ( ) ( )*å n m n m¢ ¢I IR Ri j i j, , ,

. The sum runs over all impurities. The integrals ( )n mI Ri, is defined as

( ) ( ) ( ) ( ) ( )( ) ( )*ò j j= -n m
n m

¢
¢- + ¢-I

L L
y y UR r r R

1
d e , C.1i

x z
k k i i

k k x k k z
,

i i
x x

x x z z

where ( )-U r Ri i denotes the scattering potential of a single impurity at the position Ri. The ŷ-direction
wavefunction ( )jn ykx

is given in equation (C.11). Fourier transforming the potential by using

( )
( )

( ) ( )·( )ò p
- = -U Ur R

q
q

d

2
e , C.2i i i

q r R
3

i i

and then using the formula ( )ò pd=
-¥

¥
x kd e 2kxi , n mI , can be rewritten as
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q R
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3
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x x
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Using equation (C.3), ( ) ( )*å n m n m¢ ¢I IR Ri j i j, , ,
can bewritten as
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Under the average of impurity configurations, we employ the theory of impurity average [64]

( ) ( ) ( ) ( ) ( ) ( ) ( )· ·å å d p d¢ » = á ñ - ¢¢ -
- ¢U U U Uq q q q q qe 2 , C.5
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i i 2 3 2
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where ( ) ( )á ñ º åU U Vq qi i
2

imp
2 . Thenwe can integrate over ¢q to obtain
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wherewe have used

( ) ( ) ( )d
p
d+ ¢ - = + ¢ -q k k

L
q k k

2
, C.7x x x

y
x x x

2

( ) ( ) ( )d
p
d+ ¢ - = + ¢ -q k k

L
q k k

2
. C.8z z z

z
z z z

2

C.1. Scatteringmatrix element ∣ ∣á ñ¢ ¢U
k k k k, ; ,
0,0 2
x z x z

In the Landau gauge ˆ= -ByA x, the corresponding eigenwavefunctions for n 1can bewritten

∣
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while for n = 0 as
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. Thewavefunctions ( )yn rk k, x z
are given by
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where ℓ=y kx B0
2 is the guiding center andn are theHermite polynomials.

Using thewavefunctions equation (C.9), the scatteringmatrix elements between state ∣ ñk k0, ,x z and state
∣ ¢ ¢ñk k0, ,x z can bewritten as
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.With n = 0 and m = 0 in equation (C.6), we have
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Substituting the explicit formof thewavefunction equation (C.11), we canfind
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C.2. Scatteringmatrix element ∣ ∣á ñ¢ ¢
U

k k k k, ; ,
1 ,0 2

x z x z

Similarly, the scatteringmatrix elements between state ∣  ñk k1 , ,x z and state ∣ ¢ ¢ñk k0, ,x z can bewritten as
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.With n = 1and m = 0 in equation (C.6), we have
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Substituting thewavefunction equation (C.11), we can find
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Therefore equation (C.19) can be rewritten as
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