193 research outputs found

    Evaluation of the Psychometric Properties of the Five Facet of Mindfulness Questionnaire.

    Get PDF
    ObjectiveThe Five Facet of Mindfulness Questionnaire (FFMQ) is widely used to assess mindfulness. The present study provides a psychometric evaluation of the FFMQ that includes item response theory (IRT) analyses and evaluation of item characteristic curves.MethodWe administered the FFMQ, the Beck Depression Inventory-II, the Ruminative Response Scale, and the Emotion Regulation Questionnaire to a heterogenous sample of 240 community-based adults. We estimated internal consistency reliability, item-scale correlations, categorical confirmatory factor analysis, and IRT graded response models for the FFMQ. We also estimated correlations among the FFMQ scales and correlations with the other measures included in the study.ResultsInternal consistency reliabilities for the five FFMQ scales were 0.82 or higher. A five-factor categorical model fit the data well. IRT-estimated item characteristic curves indicated that the five response options were monotonically ordered for most of the items. Product-moment correlations between simple-summated scoring and IRT scoring of the scales were 0.97 or higher.ConclusionsThe FFMQ accurately identifies varying levels of trait mindfulness. IRT-derived estimates will inform future adaptations to the FFMQ (e.g., briefer versions) and the development of future mindfulness instruments

    Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3

    Get PDF
    The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO[subscript 3] ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained

    A fast and accurate method to detect allelic genomic imbalances underlying mosaic rearrangements using SNP array data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosaicism for copy number and copy neutral chromosomal rearrangements has been recently identified as a relatively common source of genetic variation in the normal population. However its prevalence is poorly defined since it has been only studied systematically in one large-scale study and by using non optimal <it>ad-hoc </it>SNP array data analysis tools, uncovering rather large alterations (> 1 Mb) and affecting a high proportion of cells. Here we propose a novel methodology, Mosaic Alteration Detection-MAD, by providing a software tool that is effective for capturing previously described alterations as wells as new variants that are smaller in size and/or affecting a low percentage of cells.</p> <p>Results</p> <p>The developed method identified all previously known mosaic abnormalities reported in SNP array data obtained from controls, bladder cancer and HapMap individuals. In addition MAD tool was able to detect new mosaic variants not reported before that were smaller in size and with lower percentage of cells affected. The performance of the tool was analysed by studying simulated data for different scenarios. Our method showed high sensitivity and specificity for all assessed scenarios.</p> <p>Conclusions</p> <p>The tool presented here has the ability to identify mosaic abnormalities with high sensitivity and specificity. Our results confirm the lack of sensitivity of former methods by identifying new mosaic variants not reported in previously utilised datasets. Our work suggests that the prevalence of mosaic alterations could be higher than initially thought. The use of appropriate SNP array data analysis methods would help in defining the human genome mosaic map.</p

    Merging Resource Availability with Isotope Mixing Models: The Role of Neutral Interaction Assumptions

    Get PDF
    Background: Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is often problematic because such information is not necessarily predictive of diet, and the information required to build a reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a predator's diet and introduces the strong assumption of consumer ultrageneralism (where all prey are consumed in equal proportions), particularly when multiple prey have similar isotope values. Methodology: We develop a procedure to incorporate prey availability data into Bayesian mixing models conditional on the similarity of isotope values between two prey. If a pair of prey have similar isotope values (resulting in highly uncertain mixing model results), our model increases the weight of availability data in estimating the contribution of prey to a predator's diet. We test the utility of this method in an intertidal community against independently measured feeding rates. Conclusions: Our results indicate that our weighting procedure increases the accuracy by which consumer diets can be inferred in situations where multiple prey have similar isotope values. This suggests that the exchange of formalism for predictive power is merited, particularly when the relationship between prey availability and a predator's diet cannot be assumed for all species in a system.National Science Foundation (NSF) [DEB-0608178]U.S. Environmental Protection AgencyDepartment of EducationSigma XiUniversity of ChicagoFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)(CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superiori

    Human Cytomegalovirus UL29/28 Protein Interacts with Components of the NuRD Complex Which Promote Accumulation of Immediate-Early RNA

    Get PDF
    Histone deacetylation plays a pivotal role in regulating human cytomegalovirus gene expression. In this report, we have identified candidate HDAC1-interacting proteins in the context of infection by using a method for rapid immunoisolation of an epitope-tagged protein coupled with mass spectrometry. Putative interactors included multiple human cytomegalovirus-coded proteins. In particular, the interaction of pUL38 and pUL29/28 with HDAC1 was confirmed by reciprocal immunoprecipitations. HDAC1 is present in numerous protein complexes, including the HDAC1-containing nucleosome remodeling and deacetylase protein complex, NuRD. pUL38 and pUL29/28 associated with the MTA2 component of NuRD, and shRNA-mediated knockdown of the RBBP4 and CHD4 constituents of NuRD inhibited HCMV immediate-early RNA and viral DNA accumulation; together this argues that multiple components of the NuRD complex are needed for efficient HCMV replication. Consistent with a positive acting role for the NuRD elements during viral replication, the growth of pUL29/28- or pUL38-deficient viruses could not be rescued by treating infected cells with the deacetylase inhibitor, trichostatin A. Transient expression of pUL29/28 enhanced activity of the HCMV major immediate-early promoter in a reporter assay, regardless of pUL38 expression. Importantly, induction of the major immediate-early reporter activity by pUL29/28 required functional NuRD components, consistent with the inhibition of immediate-early RNA accumulation within infected cells after knockdown of RBBP4 and CHD4. We propose that pUL29/28 modifies the NuRD complex to stimulate the accumulation of immediate-early RNAs

    The Effects of Apolipoprotein F Deficiency on High Density Lipoprotein Cholesterol Metabolism in Mice

    Get PDF
    Apolipoprotein F (apoF) is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP) based on its ability to inhibit cholesteryl ester transfer protein (CETP)-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20–25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/βˆ’0.9 mg/dl vs. WT: 1.2+/βˆ’0.3 mg/dl, p<0.05). No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls

    A Forward-Genetic Screen and Dynamic Analysis of Lambda Phage Host-Dependencies Reveals an Extensive Interaction Network and a New Anti-Viral Strategy

    Get PDF
    Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli) genesβ€”over half of which have not been previously associated with infectionβ€”that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolationβ€”one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles

    Genome-Wide Association Study in East Asians Identifies Novel Susceptibility Loci for Breast Cancer

    Get PDF
    Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS) in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls). SNP rs9485372, near the TGF-Ξ² activated kinase (TAB2) gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8Γ—10βˆ’12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals) were 0.89 (0.85–0.94) and 0.80 (0.75–0.86) for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (Pβ€Š=β€Š1.9Γ—10βˆ’6 from the combined analysis of all samples), located in intron 5 of the ESR1 gene, and SNP rs7107217 (Pβ€Š=β€Š4.6Γ—10βˆ’7), located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1), and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively
    • …
    corecore