1,623 research outputs found

    Sox2 and FGF20 interact to regulate organ of Corti hair cell and supporting cell development in a spatially-graded manner.

    Get PDF
    The mouse organ of Corti, housed inside the cochlea, contains hair cells and supporting cells that transduce sound into electrical signals. These cells develop in two main steps: progenitor specification followed by differentiation. Fibroblast Growth Factor (FGF) signaling is important in this developmental pathway, as deletion of FGF receptor 1 (Fgfr1) or its ligand, Fgf20, leads to the loss of hair cells and supporting cells from the organ of Corti. However, whether FGF20-FGFR1 signaling is required during specification or differentiation, and how it interacts with the transcription factor Sox2, also important for hair cell and supporting cell development, has been a topic of debate. Here, we show that while FGF20-FGFR1 signaling functions during progenitor differentiation, FGFR1 has an FGF20-independent, Sox2-dependent role in specification. We also show that a combination of reduction in Sox2 expression and Fgf20 deletion recapitulates the Fgfr1-deletion phenotype. Furthermore, we uncovered a strong genetic interaction between Sox2 and Fgf20, especially in regulating the development of hair cells and supporting cells towards the basal end and the outer compartment of the cochlea. To explain this genetic interaction and its effects on the basal end of the cochlea, we provide evidence that decreased Sox2 expression delays specification, which begins at the apex of the cochlea and progresses towards the base, while Fgf20-deletion results in premature onset of differentiation, which begins near the base of the cochlea and progresses towards the apex. Thereby, Sox2 and Fgf20 interact to ensure that specification occurs before differentiation towards the cochlear base. These findings reveal an intricate developmental program regulating organ of Corti development along the basal-apical axis of the cochlea

    Chemical Cartography of the Sagittarius Stream with Gaia

    Full text link
    The stellar stream connected to the Sagittarius (Sgr) dwarf galaxy is the most massive tidal stream that has been mapped in the Galaxy, and is the dominant contributor to the outer stellar halo of the Milky Way. We present metallicity maps of the Sgr stream, using 34,240 red giant branch stars with inferred metallicities from Gaia BP/RP spectra. This sample is larger than previous samples of Sgr stream members with chemical abundances by an order of magnitude. We measure metallicity gradients with respect to Sgr stream coordinates (Λ,B)(\Lambda, B), and highlight the gradient in metallicity with respect to stream latitude coordinate BB, which has not been observed before. We find [M/H]=2.48±0.08×102\nabla \mathrm{[M/H]} = -2.48 \pm 0.08 \times 10^{-2} dex/deg above the stream track (B>B0B>B_0 where B0=1.5B_0=1.5 deg is the latitude of the Sgr remnant) and [M/H]=2.02±0.08×102\nabla \mathrm{[M/H]} =- 2.02 \pm 0.08 \times 10^{-2} dex/deg below the stream track (B<B0B<B_0). By painting metallicity gradients onto a tailored N-body simulation of the Sgr stream, we find that the observed metallicities in the stream are consistent with an initial radial metallicity gradient in the Sgr dwarf galaxy of 0.1\sim -0.1 to 0.2-0.2 dex/kpc, well within the range of observed metallicity gradients in Local Group dwarf galaxies. Our results provide novel observational constraints for the internal structure of the dwarf galaxy progenitor of the Sgr stream. Leveraging new large datasets in conjunction with tailored simulations, we can connect the present day properties of disrupted dwarfs in the Milky Way to their initial conditions.Comment: 20 pages, 12 figures. Submitted to ApJ; comments welcome

    α-Klotho Expression in Human Tissues.

    Get PDF
    CONTEXT: α-Klotho has emerged as a powerful regulator of the aging process. To date, the expression profile of α-Klotho in human tissues is unknown, and its existence in some human tissue types is subject to much controversy. OBJECTIVE: This is the first study to characterize systemwide tissue expression of transmembrane α-Klotho in humans. We have employed next-generation targeted proteomic analysis using parallel reaction monitoring in parallel with conventional antibody-based methods to determine the expression and spatial distribution of human α-Klotho expression in health. RESULTS: The distribution of α-Klotho in human tissues from various organ systems, including arterial, epithelial, endocrine, reproductive, and neuronal tissues, was first identified by immunohistochemistry. Kidney tissues showed strong α-Klotho expression, whereas liver did not reveal a detectable signal. These results were next confirmed by Western blotting of both whole tissues and primary cells. To validate our antibody-based results, α-Klotho-expressing tissues were subjected to parallel reaction monitoring mass spectrometry (data deposited at ProteomeXchange, PXD002775) identifying peptides specific for the full-length, transmembrane α-Klotho isoform. CONCLUSIONS: The data presented confirm α-Klotho expression in the kidney tubule and in the artery and provide evidence of α-Klotho expression across organ systems and cell types that has not previously been described in humans.K.L. received a Genzyme-Sanofi Fellowship in Nephrology grant. T.F.H. is funded by the NIHR award to the Cambridge Biomedical Research Centre and by NIHR grant 14/49/147. The Cambridge Aorta Study is funded by the British Heart Foundation.This is the author accepted manuscript. The final version is available from the Endocrine Society via http://dx.doi.org/10.1210/jc.2015-1800

    S100A12 in Digestive Diseases and Health: A Scoping Review

    Get PDF
    Calgranulin proteins are an important class of molecules involved in innate immunity. These members of the S100 class of the EF-hand family of calcium-binding proteins have numerous cellular and antimicrobial functions. One protein in particular, S100A12 (also called EN-RAGE or calgranulin C), is highly abundant in neutrophils during acute inflammation and has been implicated in immune regulation. Structure-function analyses reveal that S100A12 has the capacity to bind calcium, zinc, and copper, processes that contribute to nutritional immunity against invading microbial pathogens. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and CD36, which promote cellular and immunological pathways to alter inflammation. We conducted a scoping review of the existing literature to define what is known about the association of S100A12 with digestive disease and health. Results suggest that S100A12 is implicated in gastroenteritis, necrotizing enterocolitis, gastritis, gastric cancer, Crohn’s disease, irritable bowel syndrome, inflammatory bowel disease, and digestive tract cancers. Together, these results reveal S100A12 is an important molecule broadly associated with the pathogenesis of digestive diseases

    Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping

    Get PDF
    Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al

    INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants.

    Get PDF
    Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA\u27s superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/
    corecore