16 research outputs found

    Associations of [18F]-APN-1607 Tau PET Binding in the Brain of Alzheimer's Disease Patients With Cognition and Glucose Metabolism.

    Get PDF
    Molecular imaging of tauopathies is complicated by the differing specificities and off-target binding properties of available radioligands for positron emission tomography (PET). [18F]-APN-1607 ([18F]-PM-PBB3) is a newly developed PET tracer with promising properties for tau imaging. We aimed to characterize the cerebral binding of [18F]-APN-1607 in Alzheimer's disease (AD) patients compared to normal control (NC) subjects. Therefore, we obtained static late frame PET recordings with [18F]-APN-1607 and [18F]-FDG in patients with a clinical diagnosis of AD group, along with an age-matched NC group ([18F]-APN-1607 only). Using statistical parametric mapping (SPM) and volume of interest (VOI) analyses of the reference region normalized standardized uptake value ratio maps, we then tested for group differences and relationships between both PET biomarkers, as well as their associations with clinical general cognition. In the AD group, [18F]-APN-1607 binding was elevated in widespread cortical regions (P < 0.001 for VOI analysis, familywise error-corrected P < 0.01 for SPM analysis). The regional uptake in AD patients correlated negatively with Mini-Mental State Examination score (frontal lobe: R = -0.632, P = 0.004; temporal lobe: R = -0.593, P = 0.008; parietal lobe: R = -0.552, P = 0.014; insula: R = -0.650, P = 0.003; cingulum: R = -0.665, P = 0.002) except occipital lobe (R = -0.417, P = 0.076). The hypometabolism to [18F]-FDG PET in AD patients also showed negative correlations with regional [18F]-APN-1607 binding in some signature areas of AD (temporal lobe: R = -0.530, P = 0.020; parietal lobe: R = -0.637, P = 0.003; occipital lobe: R = -0.567, P = 0.011). In conclusion, our results suggested that [18F]-APN-1607 PET sensitively detected tau deposition in AD and that individual tauopathy correlated with impaired cerebral glucose metabolism and cognitive function

    Mucosal-associated invariant T cells augment immunopathology and gastritis in chronic helicobacter pyloriInfection

    Get PDF
    Mucosal-associated invariant T (MAIT) cells produce inflammatory cytokines and cytotoxic granzymes in response to by-products of microbial riboflavin synthesis. Although MAIT cells are protective against some pathogens, we reasoned that they might contribute to pathology in chronic bacterial infection. We observed MAIT cells in proximity to Helicobacter pylori bacteria in human gastric tissue, and so, using MR1-tetramers, we examined whether MAIT cells contribute to chronic gastritis in a mouse H. pylori SS1 infection model. Following infection, MAIT cells accumulated to high numbers in the gastric mucosa of wild-type C57BL/6 mice, and this was even more pronounced in MAIT TCR transgenic mice or in C57BL/6 mice where MAIT cells were preprimed by Ag exposure or prior infection. Gastric MAIT cells possessed an effector memory Tc1/Tc17 phenotype, and were associated with accelerated gastritis characterized by augmented recruitment of neutrophils, macrophages, dendritic cells, eosinophils, and non-MAIT T cells and by marked gastric atrophy. Similarly treated MR1−/− mice, which lack MAIT cells, showed significantly less gastric pathology. Thus, we demonstrate the pathogenic potential of MAIT cells in Helicobacter-associated immunopathology, with implications for other chronic bacterial infections

    Data from: Characterization and analysis of a de novo transcriptome from the pygmy grasshopper Tetrix japonica

    No full text
    The pygmy grasshopper Tetrix japonica is a common insect distributed throughout the world, and it has the potential for use in studies of body colour polymorphism, genomics and the biology of Tetrigoidea (Insecta: Orthoptera). However, limited biological information is available for this insect. Here, we conducted a de novo transcriptome study of adult and larval T. japonica to provide a better understanding of its gene expression and develop genomic resources for future work. We sequenced and explored the characteristics of the de novo transcriptome of T. japonica using Illumina HiSeq 2000 platform. A total of 107 608 206 paired-end clean reads were assembled into 61 141 unigenes using the trinity software; the mean unigene size was 771 bp, and the N50 length was 1238 bp. A total of 29 225 unigenes were functionally annotated to the NCBI nonredundant protein sequences (Nr), NCBI nonredundant nucleotide sequences (Nt), a manually annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of putative genes that are potentially involved in pigment pathways, juvenile hormone (JH) metabolism and signalling pathways were identified in the T. japonica transcriptome. Additionally, 165 769 and 156 796 putative single nucleotide polymorphisms occurred in the adult and larvae transcriptomes, respectively, and a total of 3162 simple sequence repeats were detected in this assembly. This comprehensive transcriptomic data for T. japonica will provide a usable resource for gene predictions, signalling pathway investigations and molecular marker development for this species and other pygmy grasshoppers

    De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii

    No full text
    Background: The grasshopper Shirakiacris shirakii is an important agricultural pest and feeds mainly on gramineous plants, thereby causing economic damage to a wide range of crops. However, genomic information on this species is extremely limited thus far, and transcriptome data relevant to insecticide resistance and pest control are also not available. Methods: The transcriptome of S. shirakii was sequenced using the Illumina HiSeq platform, and we de novo assembled the transcriptome. Results: Its sequencing produced a total of 105,408,878 clean reads, and the de novo assembly revealed 74,657 unigenes with an average length of 680 bp and N50 of 1057 bp. A total of 28,173 unigenes were annotated for the NCBI non-redundant protein sequences (Nr), NCBI non-redundant nucleotide sequences (Nt), a manually-annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Based on the Nr annotation results, we manually identified 79 unigenes encoding cytochrome P450 monooxygenases (P450s), 36 unigenes encoding carboxylesterases (CarEs) and 36 unigenes encoding glutathione S-transferases (GSTs) in S. shirakii. Core RNAi components relevant to miroRNA, siRNA and piRNA pathways, including Pasha, Loquacious, Argonaute-1, Argonaute-2, Argonaute-3, Zucchini, Aubergine, enhanced RNAi-1 and Piwi, were expressed in S. shirakii. We also identified five unigenes that were homologous to the Sid-1 gene. In addition, the analysis of differential gene expressions revealed that a total of 19,764 unigenes were up-regulated and 4185 unigenes were down-regulated in larvae. In total, we predicted 7504 simple sequence repeats (SSRs) from 74,657 unigenes. Conclusions: The comprehensive de novo transcriptomic data of S. shirakii will offer a series of valuable molecular resources for better studying insecticide resistance, RNAi and molecular marker discovery in the transcriptome

    The unigenes of the Tetrix japoncia assembly

    No full text
    "TjA-Unigene.fa" represents all the unigenes of the adult samples from Tetrix japonica. "TjL-Unigene.fa" represents all the unigenes of the larval samples from T.japonica. "TjATjL-Unigene.fa" represents allthe unigenes of the merged assembly of adult and larval samples from T.japoncia

    Comparative mitochondrial genomes of four species of Sinopodisma and phylogenetic implications (Orthoptera, Melanoplinae)

    No full text
    In this study, the whole mitochondrial genomes (mitogenomes) from four species were sequenced. The complete mitochondrial genomes of Sinopodisma pieli, S. houshana, S. qinlingensis, and S. wulingshanensis are 15,857 bp, 15,818 bp, 15,843 bp, and 15,872 bp in size, respectively. The 13 protein-coding genes (PCGs) begin with typical ATN codons, except for COXI in S. qinlingensis, which begins with ACC. The highest A+T content in all the sequenced orthopteran mitogenomes is 76.8% (S. qinlingensis), followed by 76.5% (S. wulingshanensis), 76.4% (S. pieli) and 76.4% (S. houshana) (measured on the major strand). The long polythymine stretches (T-stretch) in the A+T-rich region of the four species are not adjacent to the trnI locus but are inside the stem-loop sequences on the major strand. Moreover, several repeated elements are found in the A+T-rich region of the four species. Phylogenetic analysis based on 53 mitochondrial genomes using Bayesian Inference (BI) and Maximum Likelihood (ML) revealed that Melanoplinae (Podismini) was a monophyletic group; however, the monophyly of Sinopodisma was not supported. These data will provide important information for a better understanding of the phylogenetic relationship of Melanoplinae
    corecore