19 research outputs found

    Manganese–calcium clusters supported by calixarenes

    Get PDF
    The structure of the oxygen-evolving complex of photosystem II, which contains a cubane-like metal-oxo cluster incorporating four manganese (III,IV) cations, along with a calcium cation, has focussed attention on synthetic analogues of this cluster. Despite this activity, there are relatively few structurally characterised coordination clusters with this combination of metal cations. The calixarenes are synthetically versatile and well established cluster-supporting ligands, which to date have not been reported to support a calcium/manganese cluster. Here we report that p-t-butylthiacalix[4]arene supports CaMn2 and Ca2Mn2 clusters, whereas reactions of p-t-butylcalix[4]arene, p-t-butylsulfinylcalix[4]arene, and p-t-butylsulfonylcalix[4]arene, under the same conditions, produced only homometallic manganese complexes

    ANK3 related neurodevelopmental disorders: expanding the spectrum of heterozygous loss-of-function variants

    Get PDF
    ANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.Genetics of disease, diagnosis and treatmen

    A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history.

    Get PDF
    PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Haplotype and AGG Interspersion Analysis of FMR1 Alleles in a Croatian Population: No Founder Effect Detected in Patients with Fragile X Syndrome

    No full text
    Several studies have suggested that fragileXsyndrome (FRAXA), the most common inherited form of mental retardation, originated from a limited number of founder chromosomes. The aim of this study is to assess the genetic origin of fragile X syndrome in a Croatian population. We performed a haplotype analysis of the polymorphic loci DXS548 and FRAXAC1 in 18 unrelated fragile X and 56 control chromosomes. The AGG interspersion pattern of the FMR1 CGG repeat region was analyzed by sequencing. This is the first report on haplotype and AGG interspersion analysis of the fragile X syndrome gene in a Croatian population—the only eastern European population of Slavic origin analyzed so far. Our findings are intriguing, because they show a distinct distribution of the DXS548 and FRAXAC1 alleles in our fragile X population compared to other European fragile X populations. The DXS548/FRAXAC1 haplotype 194/154 (7-3), which is common among normal populations, was found to be the most frequent haplotype in our fragile X population as well. The AGG interspersion analysis indicated that AGG loss rather than haplotype may determine FMR1 allele instability. Our results suggest that no common ancestral X chromosome is associated with fragile X syndrome in the Croatian population studied. Further analysis of the origin of fragile X syndrome among other Slavic populations will be necessary to better define its eastern European distribution

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    No full text
    Purpose Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. Methods We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. Results We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. Conclusion We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies
    corecore