125 research outputs found

    The past to unravel the future: Deoxygenation events in the geological archive and the anthropocene oxygen crisis

    Get PDF
    Despite the observation that we are witnessing a true oxygen crisis, the ocean deoxygenation theme is getting less attention from the media and population compared to other environmental stressors concerning climate change. The current ocean oxygen crisis is characterized by a complex interplay of climatic, biological, and oceanographic processes acting at different time scales. Earth system models offer insights into future deoxygenation events and their potential extent; however, their capacity to precisely constrain these events is complicated by the intricate interplay of various interconnected feedback mechanisms. The Earth's geological history has been punctuated by regional and global deoxygenation events, which are usually expressed by organic-rich sediment in the geological record and can be useful past analogues of the present-day and future oxygenation crisis related to current climatic stress. Accordingly, we provide an overview of the key elements characterizing past deoxygenation events, aiming for a better understanding of the Anthropocene oxygen crisis and its potential evolution. We suggest that past global deoxygenation events during hypethermals may bear similarities to present-day dynamics in the open ocean. Additionally, we explore the significance of regional deoxygenation events with cyclical occurrences for better constraining environmental dynamics and ecological impacts in semi-enclosed, restricted, and marginal basins. Despite the unprecedented magnitude and rate of current anthropogenic pressures, it is essential to consider the comparison of triggers and feedbacks from ancient deoxygenation events when investigating the future of this concealed but ecologically impactful problem

    Mediterranean biodiversity gradient initiated by basin restriction

    Get PDF
    Physical connectivity between marine basins facilitates population exchange and hence controls biodiversity. The Mediterranean Sea is a semi-restricted basin with only a small two-way connection to the global ocean, and it is a region heavily impacted by climate change and biological invasions today. The massive migration of non-indigenous species into the basin through the Suez Canal, driven and enabled by climate warming, is drastically changing Mediterranean biodiversity. Understanding therefore the origin and cause(s) of pre-existing biodiversity patterns is crucial for predicting future impacts of climate change. Mediterranean biodiversity exhibits a west-to-east decreasing gradient in terms of species richness, but the processes that resulted in this gradient have only been hypothesized. By examining the fossil record, we provide evidence that this gradient developed 5.33 million years ago at the end of the Messinian Salinity Crisis, and it was therefore caused by the re-population of the basin by marine species with a dominating western source at the Mediterranean¿Atlantic gateway

    Measurements of the branching fractions for BKγB \to K^{*}\gamma decays at Belle II

    Get PDF
    This paper reports a study of BKγB \to K^{*}\gamma decays using 62.8±0.662.8\pm 0.6 fb1^{-1} of data collected during 2019--2020 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider, corresponding to (68.2±0.8)×106(68.2 \pm 0.8) \times 10^6 BBB\overline{B} events. We find 454±28454 \pm 28, 50±1050 \pm 10, 169±18169 \pm 18, and 160±17160 \pm 17 signal events in the decay modes B0K0[K+π]γB^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma, B0K0[KS0π0]γB^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma, B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, and B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, respectively. The uncertainties quoted for the signal yield are statistical only. We report the branching fractions of these decays: B[B0K0[K+π]γ]=(4.5±0.3±0.2)×105,\mathcal{B} [B^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma] = (4.5 \pm 0.3 \pm 0.2) \times 10^{-5}, B[B0K0[KS0π0]γ]=(4.4±0.9±0.6)×105,\mathcal{B} [B^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma] = (4.4 \pm 0.9 \pm 0.6) \times 10^{-5}, B[B+K+[K+π0]γ]=(5.0±0.5±0.4)×105, and\mathcal{B} [B^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma] = (5.0 \pm 0.5 \pm 0.4)\times 10^{-5},\text{ and} B[B+K+[KS0π+]γ]=(5.4±0.6±0.4)×105,\mathcal{B} [B^{+} \to K^{*+}[K^0_{\rm S}\pi^{+}]\gamma] = (5.4 \pm 0.6 \pm 0.4) \times 10^{-5}, where the first uncertainty is statistical, and the second is systematic. The results are consistent with world-average values

    Measurement of CPCP asymmetries in B0ϕKS0B^0\to \phi K^0_S decays with Belle II

    Full text link
    We present a measurement of time-dependent rate asymmetries in B0ϕKS0B^0\to \phi K^0_S decays to search for non-standard-model physics in bqqsb\to q \overline{q}s transitions. The data sample is collected with the Belle II detector at the SuperKEKB asymmetric-energy e+ee^{+}e^{-} collider in 2019-2022 and contains (387±6)×106(387\pm 6)\times 10^6 bottom-antibottom mesons from Υ(4S)\Upsilon(4S) resonance decays. We reconstruct 162±17162\pm17 signal events and extract the charge-parity (CPCP) violating parameters from a fit to the distribution of the proper-decay-time difference of the two BB mesons. The measured direct and mixing-induced CPCP asymmetries are A=0.31±0.20±0.05A=0.31\pm0.20\pm0.05 and S=0.54±0.260.08+0.06S=0.54\pm0.26^{+0.06}_{-0.08}, respectively, where the first uncertainties are statistical and the second are systematic. The results are compatible with the CPCP asymmetries observed in bccsb\to c\overline{c} s transitions

    Search for an invisible ZZ^\prime in a final state with two muons and missing energy at Belle II

    Full text link
    The LμLτL_{\mu}-L_{\tau} extension of the standard model predicts the existence of a lepton-flavor-universality-violating ZZ^{\prime} boson that couples only to the heavier lepton families. We search for such a ZZ^\prime through its invisible decay in the process e+eμ+μZe^+ e^- \to \mu^+ \mu^- Z^{\prime}. We use a sample of electron-positron collisions at a center-of-mass energy of 10.58GeV collected by the Belle II experiment in 2019-2020, corresponding to an integrated luminosity of 79.7fb1^{-1}. We find no excess over the expected standard-model background. We set 90%\%-confidence-level upper limits on the cross section for this process as well as on the coupling of the model, which ranges from 3×1033 \times 10^{-3} at low ZZ^{\prime} masses to 1 at ZZ^{\prime} masses of 8GeV/c2GeV/c^{2}

    Angular analysis of B+ρ+ρ0B^+ \to \rho^+\rho^0 decays reconstructed in 2019, 2020, and 2021 Belle II data

    Full text link
    We report on a Belle II measurement of the branching fraction (B\mathcal{B}), longitudinal polarization fraction (fLf_L), and CP asymmetry (ACP\mathcal{A}_{CP}) of B+ρ+ρ0B^+\to \rho^+\rho^0 decays. We reconstruct B+ρ+(π+π0(γγ))ρ0(π+π)B^+\to \rho^+(\to \pi^+\pi^0(\to \gamma\gamma))\rho^0(\to \pi^+\pi^-) decays in a sample of SuperKEKB electron-positron collisions collected by the Belle II experiment in 2019, 2020, and 2021 at the Υ\Upsilon(4S) resonance and corresponding to 190 fb1^{-1} of integrated luminosity. We fit the distributions of the difference between expected and observed BB candidate energy, continuum-suppression discriminant, dipion masses, and decay angles of the selected samples, to determine a signal yield of 345±31345 \pm 31 events. The signal yields are corrected for efficiencies determined from simulation and control data samples to obtain $\mathcal{B}(B^+ \to \rho^+\rho^0) = [23.2^{+\ 2.2}_{-\ 2.1} (\rm stat) \pm 2.7 (\rm syst)]\times 10^{-6},, f_L = 0.943 ^{+\ 0.035}_{-\ 0.033} (\rm stat)\pm 0.027(\rm syst),and, and \mathcal{A}_{CP}=-0.069 \pm 0.068(\rm stat) \pm 0.060 (\rm syst).Theresultsagreewithpreviousmeasurements.Thisisthefirstmeasurementof. The results agree with previous measurements. This is the first measurement of \mathcal{A}_{CP}in in B^+\to \rho^+\rho^0$ decays reported by Belle II

    Measurement of the branching fraction and CP\it CP asymmetry of B0π0π0B^{0} \rightarrow \pi^{0} \pi^{0} decays using 198×106198 \times 10^6 BBB\overline{B} pairs in Belle II data

    Full text link
    We report measurements of the branching fraction and CP\it CP asymmetry in B0π0π0B^{0} \to \pi^{0} \pi^{0} decays reconstructed at Belle II in an electron-positron collision sample containing 198×106198 \times 10^{6} BBB\overline{B} pairs. We measure a branching fraction \mathcal{B}(\Bpipi) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6} and a CP\it CP asymmetry \Acp(\Bpipi) = 0.14 \pm 0.46 \pm 0.07, where the first uncertainty is statistical and the second is systematic
    corecore