9 research outputs found

    Genetic counselling and testing in pulmonary arterial hypertension:a consensus statement on behalf of the International Consortium for Genetic Studies in PAH

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.</p

    Idiopathic Pulmonary Fibrosis Is Associated with Common Genetic Variants and Limited Rare Variants

    No full text
    Rationale: Idiopathic pulmonary fibrosis is a rare, irreversible, and progressive disease of the lungs. Common genetic variants, in addition to non-genetic factors, have been consistently associated with IPF. Rare variants identified by candidate gene, family-based, and exome studies have also been reported to associate with IPF. However, the extent to which rare variants genome-wide may contribute to the risk of IPF remains unknown. Objectives: We used whole-genome sequencing to investigate the role of rare variants, genome-wide, on IPF risk. Methods: As part of the Trans-Omics for Precision Medicine Program, we sequenced 2,180 cases of IPF. Association testing focused on the aggregated effect of rare variants (minor allele frequency ≤0.01) within genes or regions. We also identified individual variants that are influential within genes and estimated the heritability of IPF based on rare and common variants. Measurements and main results: Rare variants in both TERT and RTEL1 were significantly associated with IPF. A single rare variant in each of the TERT and RTEL1 genes was found to consistently influence the aggregated test statistics. There was no significant evidence of association with other previously reported rare variants. The SNP-heritability of IPF was estimated to be 32% (s.e. 3%). Conclusions: Rare variants within the TERT and RTEL1 genes and well-established common variants have the largest contribution to IPF risk overall. Efforts in risk profiling or development of therapies for IPF that focus on TERT, RTEL1, common variants, and environmental risk factors are likely to have the largest impact on this complex disease

    Targeting BMP signalling in cardiovascular disease and anaemia.

    No full text
    Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies

    Targeting BMP signalling in cardiovascular disease and anaemia

    No full text

    Hansard as an Aid to Statutory Interpretation in Canadian Courts from 1999 to 2010

    No full text
    corecore