1,582 research outputs found
Approach to a rational rotation number in a piecewise isometric system
We study a parametric family of piecewise rotations of the torus, in the
limit in which the rotation number approaches the rational value 1/4. There is
a region of positive measure where the discontinuity set becomes dense in the
limit; we prove that in this region the area occupied by stable periodic orbits
remains positive. The main device is the construction of an induced map on a
domain with vanishing measure; this map is the product of two involutions, and
each involution preserves all its atoms. Dynamically, the composition of these
involutions represents linking together two sector maps; this dynamical system
features an orderly array of stable periodic orbits having a smooth parameter
dependence, plus irregular contributions which become negligible in the limit.Comment: LaTeX, 57 pages with 13 figure
Gauge dependence of effective action and renormalization group functions in effective gauge theories
The Caswell-Wilczek analysis on the gauge dependence of the effective action
and the renormalization group functions in Yang-Mills theories is generalized
to generic, possibly power counting non renormalizable gauge theories. It is
shown that the physical coupling constants of the classical theory can be
redefined by gauge parameter dependent contributions of higher orders in
in such a way that the effective action depends trivially on the gauge
parameters, while suitably defined physical beta functions do not depend on
those parameters.Comment: 13 pages Latex file, additional comments in section
Geometric representation of interval exchange maps over algebraic number fields
We consider the restriction of interval exchange transformations to algebraic
number fields, which leads to maps on lattices. We characterize
renormalizability arithmetically, and study its relationships with a
geometrical quantity that we call the drift vector. We exhibit some examples of
renormalizable interval exchange maps with zero and non-zero drift vector, and
carry out some investigations of their properties. In particular, we look for
evidence of the finite decomposition property: each lattice is the union of
finitely many orbits.Comment: 34 pages, 8 postscript figure
Higher-order non-symmetric counterterms in pure Yang-Mills theory
We analyze the restoration of the Slavnov-Taylor (ST) identities for pure
massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization
scheme with IR regulator. We obtain the most general form of the action-like
part of the symmetric regularized action, obeying the relevant ST identities
and all other relevant symmetries of the model, to all orders in the loop
expansion. We also give a cohomological characterization of the fulfillment of
BPHZL IR power-counting criterion, guaranteeing the existence of the limit
where the IR regulator goes to zero. The technique analyzed in this paper is
needed in the study of the restoration of the ST identities for those models,
like the MSSM, where massless particles are present and no invariant
regularization scheme is known to preserve the full set of ST identities of the
theory.Comment: Final version published in the journa
Exact solution (by algebraic methods) of the lattice Schwinger model in the strong-coupling regime
Using the monomer--dimer representation of the lattice Schwinger model, with
Wilson fermions in the strong--coupling regime (), we
evaluate its partition function, , exactly on finite lattices. By studying
the zeroes of in the complex plane for a large number of
small lattices, we find the zeroes closest to the real axis for infinite
stripes in temporal direction and spatial extent and 3. We find evidence
for the existence of a critical value for the hopping parameter in the
thermodynamic limit on the real axis at about . By looking at the behaviour of quantities, such as the chiral
condensate, the chiral susceptibility and the third derivative of with
respect to , close to the critical point , we find some indications
for a continuous phase transition.Comment: 22 pages (6 figures
Hyperbolic outer billiards : a first example
We present the first example of a hyperbolic outer billiard. More precisely
we construct a one parameter family of examples which in some sense correspond
to the Bunimovich billiards.Comment: 11 pages, 8 figures, to appear in Nonlinearit
Jorge A. Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research
After revisiting some high points of particle physics and QFT of the two
decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I
explain how it fits into the quantum field theory during these two decades and
draw attention to its relevance to the ongoing particle physics research. A
particular aim of this article is to direct thr readers mindfulness to the
relevance of what at the time of Swieca was called "the Schwinger Higgs
screening mechanism". which, together with recent ideas which generalize the
concept of gauge theories, has all the ingredients to revolutionize the issue
of gauge theories and the standard model.Comment: 49 pages, expansion and actualization of text, improvement of
formulations and addition of many references to be published in EPJH -
Historical Perspectives on Contemporary Physic
The General Correlation Function in the Schwinger Model on a Torus
In the framework of the Euclidean path integral approach we derive the exact
formula for the general N-point chiral densities correlator in the Schwinger
model on a torusComment: 17 pages, misprints corrected, references adde
Discretized rotation has infinitely many periodic orbits
For a fixed k in (-2,2), the discretized rotation on Z^2 is defined by
(x,y)->(y,-[x+ky]). We prove that this dynamics has infinitely many periodic
orbits.Comment: Revised after referee reports, and added a quantitative statemen
Renormalization Group Study of Chern-Simons Field Coupled to Scalar Matter in a Modified BPHZ Subtraction Scheme
We apply a soft version of the BPHZ subtraction scheme to the computation of
two-loop corrections from an Abelian Chern-Simons field coupled to (massive)
scalar matter with a and
self-interactions. The two-loop renormalization group functions are calculated.
We compare our results with those in the literature.Comment: 15 pages, 7 figures, revtex. To appear in Phys. Rev.
- …