16,861 research outputs found

    A nanoradian differential VLBI tracking demonstration

    Get PDF
    The shift due to Jovian gravitational deflection in the apparent angular position of the radio source P 0201+113 was measured with very long baseline interferometry (VLBI) to demonstrate a differential angular tracking technique with nanoradian accuracy. The raypath of the radio source P 0201+113 passed within 1 mrad of Jupiter (approximately 10 Jovian radii) on 21 Mar. 1988. Its angular position was measured 10 times over 4 hours on that date, with a similar measurement set on 2 Apr. 1988, to track the differential angular gravitational deflection of the raypath. According to general relativity, the expected gravitational bend of the raypath averaged over the duration of the March experiment was approximately 1.45 nrad projected onto the two California-Australia baselines over which it was measured. Measurement accuracies on the order of 0.78 nrad were obtained for each of the ten differential measurements. The chi(exp 2) per degree of freedom of the data for the hypothesis of general relativity was 0.6, which suggests that the modeled dominant errors due to system noise and tropospheric fluctuations fully accounted for the scatter in the measured angular deflections. The chi(exp 2) per degree of freedom for the hypothesis of no gravitational deflection by Jupiter was 4.1, which rejects the no-deflection hypothesis with greater than 99.999 percent confidence. The system noise contributed about 0.34 nrad per combined-baseline differential measurement and tropospheric fluctuations contributed about 0.70 nrad. Unmodeled errors were assessed, which could potentially increase the 0.78 nrad error by about 8 percent. The above chi(exp 2) values, which result from the full accounting of errors, suggest that the nanoradian gravitational deflection signature was successfully tracked

    Modelling the Galactic Magnetic Field on the Plane in 2D

    Full text link
    We present a method for parametric modelling of the physical components of the Galaxy's magnetised interstellar medium, simulating the observables, and mapping out the likelihood space using a Markov Chain Monte-Carlo analysis. We then demonstrate it using total and polarised synchrotron emission data as well as rotation measures of extragalactic sources. With these three datasets, we define and study three components of the magnetic field: the large-scale coherent field, the small-scale isotropic random field, and the ordered field. In this first paper, we use only data along the Galactic plane and test a simple 2D logarithmic spiral model for the magnetic field that includes a compression and a shearing of the random component giving rise to an ordered component. We demonstrate with simulations that the method can indeed constrain multiple parameters yielding measures of, for example, the ratios of the magnetic field components. Though subject to uncertainties in thermal and cosmic ray electron densities and depending on our particular model parametrisation, our preliminary analysis shows that the coherent component is a small fraction of the total magnetic field and that an ordered component comparable in strength to the isotropic random component is required to explain the polarisation fraction of synchrotron emission. We outline further work to extend this type of analysis to study the magnetic spiral arm structure, the details of the turbulence as well as the 3D structure of the magnetic field.Comment: 18 pages, 11 figures, updated to published MNRAS versio

    Some economic benefits of a synchronous earth observatory satellite

    Get PDF
    An analysis was made of the economic benefits which might be derived from reduced forecasting errors made possible by data obtained from a synchronous satellite system which can collect earth observation and meteorological data continuously and on demand. User costs directly associated with achieving benefits are included. In the analysis, benefits were evaluated which might be obtained as a result of improved thunderstorm forecasting, frost warning, and grain harvest forecasting capabilities. The anticipated system capabilities were used to arrive at realistic estimates of system performance on which to base the benefit analysis. Emphasis was placed on the benefits which result from system forecasting accuracies. Benefits from improved thunderstorm forecasts are indicated for the construction, air transportation, and agricultural industries. The effects of improved frost warning capability on the citrus crop are determined. The benefits from improved grain forecasting capability are evaluated in terms of both U.S. benefits resulting from domestic grain distribution and U.S. benefits from international grain distribution

    AdS/CFT and the Information Paradox

    Get PDF
    The information paradox in the quantum evolution of black holes is studied within the framework of the AdS/CFT correspondence. The unitarity of the CFT strongly suggests that all information about an initial state that forms a black hole is returned in the Hawking radiation. The CFT dynamics implies an information retention time of order the black hole lifetime. This fact determines many qualitative properties of the non-local effects that must show up in a semi-classical effective theory in the bulk. We argue that no violations of causality are apparent to local observers, but the semi-classical theory in the bulk duplicates degrees of freedom inside and outside the event horizon. Non-local quantum effects are required to eliminate this redundancy. This leads to a breakdown of the usual classical-quantum correspondence principle in Lorentzian black hole spacetimes.Comment: 16 pages, harvmac, reference added, minor correction

    A Proposed Hospitality Curriculum for Two-Year Colleges in Florida

    Get PDF
    The expansion of the hotel industry and its related areas necessitates new educational training for those who will occupy positions of responsibility. Two-year colleges provide one possibility for this training. The authors propose a common foundation for all such programs in Florida

    A systematic characterization of cognitive techniques for learning from textual and pictorial representations

    Get PDF
    Pictorial representations can play a pivotal role in both printed and digital learning material. Although there has been extensive research on cognitive techniques and strategies for learning from text, the same cannot be said for static and dynamic pictorial representations. In this paper we propose a systematic characterization of cognitive learning techniques that is founded on both theoretical and empirical research. The characterization relates the learning techniques to classes of cognitive processes as well as to textual and pictorial representations. We show how successful strategies for learning from both plain text and illustrated text are covered by the characterization. We also exemplify how the construction of new strategies for pictorial representations can be informed by the characterization

    Using simulated co-heating tests to understand weather driven sources of uncertainty within the co-heating test method

    Get PDF
    The so-called performance gap between designed and as-built building performance threatens to undermine carbon reduction strategies in the built environment. Field measurements to date have indicated that the measured as-built fabric heat loss of tested UK buildings is consistently higher than design values, often considerably so. Currently, our lack of knowledge over the extent of this gap, and the processes that cause it, is compounded by a lack of robust post-construction evaluation tools. Much of this post-construction evaluation work is based, in part, on the use of co-heating tests: a method utilising an energy balance to determine the heat loss across the entire building envelope, defined by the heat loss coefficient (W/K). However, the errors associated with co-heating are not well understood or typically addressed in the literature. Furthermore, the test procedure requires a building to be unoccupied for two to three weeks and is therefore often cited as costly and unsuitable both for developers and as a policy tool. In order to improve the application of this test method it is crucial firstly to understand the sources of uncertainty in co-heating tests and the ‘steady-state’ energy balance they are based upon. However, with a small database of tests performed to date it is difficult to discern these sources of error. This paper presents the results of a method using simulated co-heating tests to show how key weather variables influence the co-heating result and generate uncertainty and bias. In particular the effects of short-wave solar and long-wave sky radiation are presented. Improvements to the co-heating method can be derived from this; in particular the need to consider when dwellings should be tested to avoid large solar-generated errors and the importance of a accurately calculated solar aperture. Recommendations also include the local measurement of sky radiation to avoid outlying data points, bias in the measurement and discrepancies when comparing design and as-built heat loss

    Deduction with XOR Constraints in Security API Modelling

    Get PDF
    We introduce XOR constraints, and show how they enable a theorem prover to reason effectively about security critical subsystems which employ bitwise XOR. Our primary case study is the API of the IBM 4758 hardware security module. We also show how our technique can be applied to standard security protocols
    corecore