918 research outputs found

    Resource considerate data routing through satellite networks

    Get PDF
    In many envisaged satellite-based networks, such as constellations or federations, there often exists a desire to reduce data latency, increase delivered data volume, or simply exploit unused resources. A strategy is presented that achieves efficient routing of data, in a store-carry-forward fashion, through satellite networks that exhibit delay- and disruption-tolerant network characteristics. This network-layer protocol, termed Spae, exploits information about the schedule of future contacts between network nodes, because satellite motion is deterministic, along with the capacity of these contacts to route data in such a way as to avoid significant overcommitment of data along a resource limited journey. Results from simulations of a federated satellite system indicate consistent benefit in terms of network performance over other, less-sophisticated, conventional methods, and comparable performance to a packet-optimal, full-knowledge approach

    Environmental Impact Assessment: Detecting Changes in Fish Community Structure in Response to Disturbance with an Asymmetric Multivariate BACI Sampling Design

    Get PDF
    One of the primary challenges to detecting anthropogenic environmental impacts is the high degree of spatial and temporal variability inherent in natural systems. Planned or routine events that result in disturbance to populations and communities provide an opportunity for scientists to apply well-replicated and statistically powerful sampling designs to assess subsequent biological effects. For example, a thick layer of sessile invertebrates is the prominent biotic feature of intertidal and shallow subtidal portions of offshore petroleum platforms in southern California. Given the central role of such invertebrates in providing food and shelter, their presence can reasonably be expected to influence associated fish community structure. At one platform on the San Pedro Shelf, invertebrate biomass was completely removed from support pilings and horizontal crossmembers to a depth of 20 m with high-pressure water during a standard “hydrocleaning” event in November 2007. Three nearby platforms remained undisturbed, providing a unique opportunity to test for disturbance-related changes in the local fish assemblage and the overall time course of community recovery. The potential impact of the abrupt and intense removal of the invertebrate layer was assessed with survey data collected periodically for one year prior- and one year post-hydrocleaning in a modified Before-After-Control-Impact (BACI) design. Asymmetrical multivariate analyses of variance revealed a significant effect of disturbance to fish, driven largely by reductions in the abundance of numerically dominant blacksmith (Chromis punctipinnis). Nevertheless, the system was surprisingly resilient, recovering to pre-disturbance conditions within ten months. Our results demonstrate that a well-replicated BACI sampling design can detect even subtle biological changes in response to disturbance, a key step towards developing a mechanistic understanding of community disassembly in the face of increasingly frequent and intense perturbations

    Revised calendar date for the Taupo eruption derived by ¹⁴C wiggle-matching using a New Zealand kauri ¹⁴C calibration data set

    Get PDF
    Taupo volcano in central North Island, New Zealand, is the most frequently active and productive rhyolite volcano on Earth. Its latest explosive activity about 1800 years ago generated the spectacular Taupo eruption, the most violent eruption known in the world in the last 5000 years. We present here a new accurate and precise eruption date of AD 232 ± 5 (1718 ± 5 cal. BP) for the Taupo event. This date was derived by wiggle-matching 25 high-precision ¹⁴C dates from decadal samples of Phyllocladus trichomanoides from the Pureora buried forest near Lake Taupo against the high-precision, first-millennium AD subfossil Agathis australis (kauri) calibration data set constructed by the Waikato Radiocarbon Laboratory. It shows that postulated dates for the eruption estimated previously from Greenland ice-core records (AD 181 ± 2) and putative historical records of unusual atmospheric phenomena in ancient Rome and China (c. AD 186) are both untenable. However, although their conclusion of a zero north–south ¹⁴C offset is erroneous, and their data exhibit a laboratory bias of about 38 years (too young), Sparks et al. (Sparks RJ, Melhuish WH, McKee JWA, Ogden J, Palmer JG and Molloy BPJ (1995) ¹⁴C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. Radiocarbon 37: 155–163) correctly utilized the Northern Hemisphere calibration curve of Stuiver and Becker (Stuiver M and Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35: 35–65) to obtain an accurate wiggle-match date for the eruption identical to ours but less precise (AD 232 ± 15). Our results demonstrate that high-agreement levels, indicated by either agreement indices or χ² data, obtained from a ¹⁴C wiggle-match do not necessarily mean that age models are accurate. We also show that laboratory bias, if suspected, can be mitigated by applying the reservoir offset function with an appropriate error value (e.g. 0 ± 40 years). Ages for eruptives such as Taupo tephra that are based upon individual ¹⁴C dates should be considered as approximate only, and confined ideally to short-lived material (e.g. seeds, leaves, small branches or the outer rings of larger trees)

    Clinical Outcomes of a Pharmacy-Led Blood Factor Stewardship Program

    Get PDF
    To report the results of a pharmacist-directed blood factor stewardship program targeting off-label utilization designed to limit use to established organizational guidelines in high-risk populations. Prospective evaluation of recombinant factor VIIa and prothrombin complex concentrate orders beginning June 2013 through May 2014 and a matched retrospective cohort from June 2012 to May 2013. Matched cohorts were evaluated for 28-day mortality, change in international normalized ratio (INR), adverse events, concurrent blood product use, and cost savings. Forty-two orders for blood factor were ordered between June 2013 and May 2014, 70 orders in the year before (N = 112). Twenty eight-day mortality was not different between the cohorts: 53.9% versus 50% (P = 0.77). Blood factor use with underlying liver failure and active bleeding was strongly associated with 28-day mortality: odds ratio (95% confidence interval), 2.9 (1.5-7.14) and 2.91 (0.01-2.91), respectively. Blood products dispensed increased over the year with plasma products the most significant (1 vs. 4 P = 0.004). All other clinical outcomes were nonsignificant. An annual cost savings of $375,539 was achieved, primarily through a significant reduction in recombinant factor VIIa and avoidance in high-risk patients. Use of off-label blood factors can be controlled through a pharmacist-led stewardship program. Twenty eight-day mortality was not different between the 2 cohorts; however, identification of risk factors for death associated with blood factor use allows for restriction in high-risk populations, creates a discussion of futile care, and yields cost savings

    Understanding the loading dependence of self-diffusion in carbon nanotubes: Understanding the loading dependence of self-diffusion in carbonnanotubes

    Get PDF
    The influence of loading on the self-diffusion in an isolated single walled carbon nanotube is studied by molecular dynamics simulations. By simulating the carbon nanotube as a flexible framework we demonstrate that the flexibility has a crucial influence on self-diffusion at low loadings [1]. While simulating the nanotube as rigid a remarkable increase of the diffusion coefficient at low loadings is observed [2]. Molecular dynamics simulations of a fully flexible nanotube result in a far less pronounced increase, by a further reduction of the loading the diffusion becomes constant again. To incorporate the influence of the flexible walls in a simulation of a rigid nanotube, we have introduced a Lowe-Andersen thermostat which works on interface-fluid collisions [1]. The reproduction of the results of a flexible carbon nanotube by a rigid nanotube simulation is excellent. With this approach we simulate the loading dependent self-diffusion in carbon nanotubes. The influence of pore width and temperature on self-diffusion is studied. Furthermore, the influence of adsorption strength is investigated by comparing the self-diffusivities of different components. For small pores, in which the molecules cannot pass each other, single-file diffusion is observed under certain conditions

    Space mission resilience with inter-satellite networking

    Get PDF
    Satellites typically operate in isolation from their orbiting counterparts, but communicating only with ground-based infrastructure leaves them susceptible to the consequences of on-board anomalies. Loss of payload, communication system, or other sub-system function could render the entire satellite inoperable. This susceptibility can be partially mitigated through the addition of an inter-satellite networking capability, which offers value in terms of increased general performance and an increased resilience to on-board anomalies. While a typical platform can be modelled to exhibit only two fundamental states: operational and failed, a networking-capable platform (specifically one with an inter-satellite communication capability) exhibits six states, each reached through a unique combination of sub-system malfunctions. The result of this added resilience is a reduction in the likelihood of the satellite reaching a fully-failed state. Simulations for independent and networking-capable systems are presented that illustrate the benefits and limitations of inter-satellite networking in terms of failure resilience. It is shown that whilst a networked system can be expected to reach greater levels of performance utility, sub-system anomalies are found to result in greater percentage levels of performance degradation compared to a non-networking-capable system with similar characteristics
    corecore