8,068 research outputs found

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Get PDF
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    Electronic Structures of Nitridomanganese(V) Complexes

    Get PDF
    The single-crystal polarized absorption and circular dichroism spectra of the nitridomanganese(V) complexes (salen)Mn⋮N (1), (1S,2S-(−)-saldpen)Mn⋮N (2), and (1R,2R-(+)-saldpen)Mn⋮N (3) have been measured [salen = N,N‘-ethylenebis(salicylideneaminato) dianion, 1S,2S-(−)-saldpen = N,N‘-(1S,2S-(−)-diphenyl)ethylenebis(salicylideneaminato) dianion, and 1R,2R-(+)-saldpen = N,N‘-(1R,2R-(+)-diphenyl)ethylenebis(salicylideneaminato) dianion]. As revealed by X-ray crystal structure analyses, these molecules have a distorted square-pyramidal geometry with a short Mn⋮N bond distance (1.52(3) Å for 2). The Cs compounds have a low-spin^ 1A‘[a‘(x^2 − y^2)]^2 ground state. The lowest absorption system (∼600 nm) consists of two components that are separated by approximately 4000 cm^(-1); these are assigned to ^1A‘ → ^1A‘[a‘(x^2 − y^2)a‘(yz)] (14 900 cm^(-1)) and ^1A‘ → ^1A‘‘[a‘(x^2 − y^2)a‘‘(xz)] (18 900 cm^(-1)) transitions

    On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    Full text link
    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disk components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGWN_{\rm GW} needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disk components. Using a Monte Carlo approach, we refine our calculations for NGWN_{\rm GW} to include gravitational wave emission between scattering events. For astrophysically plausible models we find that typically NGWN_{\rm GW} \lesssim 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low velocity dispersions and no significant Keplerian component; and (2) migration traps in disks around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disk. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because disks enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Age Dating of a High-Redshift QSO B1422+231 at Z=3.62 and its Cosmological Implications

    Get PDF
    The observed Fe II(UV+optical)/Mg II lambda lambda 2796,2804 flux ratio from a gravitationally lensed quasar B1422+231 at z=3.62 is interpreted in terms of detailed modeling of photoionization and chemical enrichment in the broad-line region (BLR) of the host galaxy. The delayed iron enrichment by Type Ia supernovae is used as a cosmic clock. Our standard model, which matches the Fe II/Mg II ratio, requires the age of 1.5 Gyr for B1422+231 with a lower bound of 1.3 Gyr, which exceeds the expansion age of the Einstein-de Sitter Omega_0=1 universe at a redshift of 3.62 for any value of the Hubble constant in the currently accepted range, H_0=60-80 km,s^{-1},Mpc^{-1}. This problem of an age discrepancy at z=3.62 can be unraveled in a low-density Omega_0<0.2 universe, either with or without a cosmological constant, depending on the allowable redshift range of galaxy formation. However, whether the cosmological constant is a required option in modern cosmology awaits a thorough understanding of line transfer processes in the BLRs.Comment: 7 pages including 3 figures, to appear in ApJ Letter

    Solitons in Tonks-Girardeau gas with dipolar interactions

    Full text link
    The existence of bright solitons in the model of the Tonks-Girardeau (TG) gas with dipole-dipole (DD) interactions is reported. The governing equation is taken as the quintic nonlinear Schr\"{o}dinger equation (NLSE) with the nonlocal cubic term accounting for the DD attraction. In different regions of the parameter space (the dipole moment and atom number), matter-wave solitons feature flat-top or compacton-like shapes. For the flat-top states, the NLSE with the local cubic-quintic (CQ) nonlinearity is shown to be a good approximation. Specific dynamical effects are studied assuming that the strength of the DD interactions is ramped up or drops to zero. Generation of dark-soliton pairs in the gas shrinking under the action of the intensifying DD attraction is observed. Dark solitons exhibit the particle-like collision behavior. Peculiarities of dipole solitons in the TG gas are highlighted by comparison with the NLSE including the local CQ terms. Collisions between the solitons are studied too. In many cases, the collisions result in merger of the solitons into a breather, due to strong attraction between them.Comment: 15 pages, 8 figures, accepted by J. Phys. B: At. Mol. Opt. Phy

    Granular Scale Magnetic Flux Cancellations in the Photosphere

    Full text link
    We investigate the evolution of 5 granular-scale magnetic flux cancellations just outside the moat region of a sunspot by using accurate spectropolarimetric measurements and G-band images with the Solar Optical Telescope aboard Hinode. The opposite polarity magnetic elements approach a junction of the intergranular lanes and then they collide with each other there. The intergranular junction has strong red shifts, darker intensities than the regular intergranular lanes, and surface converging flows. This clearly confirms that the converging and downward convective motions are essential for the approaching process of the opposite-polarity magnetic elements. However, motion of the approaching magnetic elements does not always match with their surrounding surface flow patterns in our observations. This suggests that, in addition to the surface flows, subsurface downward convective motions and subsurface magnetic connectivities are important for understanding the approach and collision of the opposite polarity elements observed in the photosphere. We find that the horizontal magnetic field appears between the canceling opposite polarity elements in only one event. The horizontal fields are observed along the intergranular lanes with Doppler red shifts. This cancellation is most probably a result of the submergence (retraction) of low-lying photospheric magnetic flux. In the other 4 events, the horizontal field is not observed between the opposite polarity elements at any time when they approach and cancel each other. These approaching magnetic elements are more concentrated rather than gradually diffused, and they have nearly vertical fields even while they are in contact each other. We thus infer that the actual flux cancellation is highly time dependent events at scales less than a pixel of Hinode SOT (about 200 km) near the solar surface.Comment: Accepted for publication in the Astrophysical Journa

    Nutrient-Dense Orange-Fleshed Sweetpotato: Advances in Drought-Tolerance Breeding and Understanding of Management Practices for Sustainable Next-Generation Cropping Systems in Sub-Saharan Africa

    Get PDF
    Almost half of children < 5 years old living in sub-Saharan Africa (SSA) suffer from vitamin A deficiency and 60% suffer from iron deficiency. Thus, there has been a strong commitment to breeding for, promoting awareness of, and delivering adapted pro-vitamin A rich orange-fleshed sweetpotato (OFSP) in SSA during the past two decades and for enhanced iron content since 2014. This review article focuses on major breeding efforts in SSA to enhance the drought tolerance of OFSP and reviews integrated crop management practices for improved and sustained sweetpotato production in SSA farming systems. Under climate change, the frequency and severity of droughts is expected to increase. Technical issues are presented in the context of addressing challenges along the entire value chain to ensure adoption. First, the use of an accelerated breeding scheme reduced the breeding cycle from 8–10 to 4–5 years. Since 2010, 19 drought-tolerant OFSP cultivars have been released in Mozambique, 7 in Malawi, and 2 in South Africa. Moreover, research in four breeding populations using the heterosis exploiting breeding scheme (HEBS) demonstrated that within one breeding cycle of 5 years, clones with significantly higher root yield, abiotic tolerance, host plant resistance to pests and diseases, and early maturity can be produced. In the future, HEBS will be combined with greater use of modern genomic tools, new phenotyping tools, and CRISPR/Cas9-mediated gene editing. Second, beyond genetic enhancements, evidence is presented that using improved crop management systems, existing sweet potato yields can be increased 2–4 times. Current knowledge is reviewed concerning sweetpotato’s role in diverse farming systems, but integrated crop management is clearly under researched. Third, the outlook for drought tolerance breeding indicates that two distinct classes of nutrient-rich cultivars are emerging: (1) Early maturing cultivars (< 4 month growing period) that escape drought but also serve humid environments with small landholding size per capita; and (2) Medium maturing (4–6 month growing period) cultivars that avoid drought, are drought tolerant and exhibit continuous root formation. Increasing commercialization of the crop and climate change will drive demand, and the willingness of farmers to invest in improved sweetpotato crop management

    An implicit method for radiative transfer with the diffusion approximation in SPH

    Full text link
    An implicit method for radiative transfer in SPH is described. The diffusion approximation is used, and the hydrodynamic calculations are performed by a fully three--dimensional SPH code. Instead of the energy equation of state for an ideal gas, various energy states and the dissociation of hydrogen molecules are considered in the energy calculation for a more realistic temperature and pressure determination. In order to test the implicit code, we have performed non--isothermal collapse simulations of a centrally condensed cloud, and have compared our results with those of finite difference calculations performed by MB93. The results produced by the two completely different numerical methods agree well with each other.Comment: 25 pages, 9 figure

    Synthesis And Properties Of Clay-ZrO2-Cellulose Fibre-Reinforced Polymeric Nano-Hybrids

    Get PDF
    Epoxy nano-hybrids reinforced with cellulose fibre (CF), nano-kaolinite (K), and micro-ZrO2 (Z) have been synthesized. The influence of CF/K/Z dispersions on the mechanical properties of these hybrids have been characterized in terms of elastic modulus, hardness, flexural strength, fracture toughness and indentation responses. This new but cost-effective approach has been developed to improve the physical and mechanical properties of polymeric materials without adversely affecting their processing characteristics. The mechanism of reinforcement in these organic/inorganic nanohybrid materials has been investigated. The micromechanisms of toughening and failure processes are identified and discussed in the light of observed nano- and micro-structures

    The Hydromagnetic Interior of a Solar Quiescent Prominence. I. Coupling between Force-balance and Steady Energy-transport

    Full text link
    This series of papers investigates the dynamic interior of a quiescent prominence revealed by recent {\it Hinode} and {\it SDO/AIA} high-resolution observations. This first paper is a study of the static equilibrium of the Kippenhahn-Schl\"{u}ter diffuse plasma slab, suspended vertically in a bowed magnetic field, under the frozen-in condition and subject to a theoretical thermal balance among an optically-thin radiation, heating, and field-aligned thermal conduction. The everywhere-analytical solutions to this nonlinear problem are an extremely restricted subset of the physically admissible states of the system. For most values of the total mass frozen into a given bowed field, force-balance and steady energy-transport cannot both be met without a finite fraction of the total mass having collapsed into a cold sheet of zero thickness, within which the frozen-in condition must break down. An exact, resistive hydromagnetic extension of the Kippenhahn-Schl\"{u}ter slab is also presented, resolving the mass-sheet singularity into a finite-thickness layer of steadily-falling dense fluid. Our hydromagnetic result suggests that the narrow, vertical prominence HαH_{\alpha} threads may be falling across magnetic fields, with optically-thick cores much denser and ionized to much lower degrees than conventionally considered. This implication is discussed in relation to (i) the recent {\it SDO/AIA} observations of quiescent prominences that are massive and yet draining mass everywhere in their interiors, (ii) the canonical range of 560G5-60 G determined from spectral-polarimetric observations of prominence magnetic fields over the years and (iii) the need for a more realistic multi-fluid treatment.Comment: 45 pages, 14 figure
    corecore