1,326 research outputs found

    Variable-capacity heat pump for renewable energy recovery

    Get PDF

    Factors Affecting Laminar Boundary Layer Measurements in a Supersonic Stream

    Get PDF
    The observed discrepancy at supersonic speeds between theoretical and apparent experimental average flat plate friction-drag coefficients calculated from boundary layer total-pressure surveys was investigated. Effects of the total-pressure probe, heat transfer through the leading edge region, change in leading-edge radius and strength of the leading-edge wave, possible early transition to turbulent flow or bursts of turbulence, and the slight stream-wise pressure gradient inherent in flat plate flow were investigated for plates with very sharp leading edges. Only one of these factors, the effect of the total-pressure probe, was found to be significant. Total-pressure probes of different tip heights, when placed in laminar boundary layers developing under identical conditions, were found to yield different values of friction drag coefficient. Extrapolation of these measurements indicates that a probe of vanishing size would yield the theoretical predicted values of average flat plate friction-drag coefficients. A correlation describing the relation between the friction-drag discrepancy and the probe tip height is presented

    Speed Limits in General Relativity

    Get PDF
    Some standard results on the initial value problem of general relativity in matter are reviewed. These results are applied first to show that in a well defined sense, finite perturbations in the gravitational field travel no faster than light, and second to show that it is impossible to construct a warp drive as considered by Alcubierre (1994) in the absence of exotic matter.Comment: 7 pages; AMS-LaTeX; accepted for publication by Classical and Quantum Gravit

    HST Images Flash Ionization of Old Ejecta by the 2011 Eruption of Recurrent Nova T Pyxidis

    Get PDF
    T Pyxidis is the only recurrent nova surrounded by knots of material ejected in previous outbursts. Following the eruption that began on 2011 April 14.29, we obtained seven epochs (from 4 to 383 days after eruption) of Hubble Space Telescope narrowband Ha images of T Pyx . The flash of radiation from the nova event had no effect on the ejecta until at least 55 days after the eruption began. Photoionization of hydrogen located north and south of the central star was seen 132 days after the beginning of the eruption. That hydrogen recombined in the following 51 days, allowing us to determine a hydrogen atom density of at least 7e5 cm^-3 - at least an order of magnitude denser than the previously detected, unresolved [NII] knots surrounding T Pyx. Material to the northwest and southeast was photoionized between 132 and 183 days after the eruption began. 99 days later that hydrogen had recombined. Both then (282 days after outburst) and 101 days later, we detected almost no trace of hydrogen emission around T Pyx. There is a large reservoir of previously unseen, cold diffuse hydrogen overlapping the previously detected, [NII] - emitting knots of T Pyx ejecta. The mass of this newly detected hydrogen is probably an order of magnitude larger than that of the [NII] knots. We also determine that there is no significant reservoir of undetected ejecta from the outer boundaries of the previously detected ejecta out to about twice that distance, near the plane of the sky. The lack of distant ejecta is consistent with the Schaefer et al (2010) scenario for T Pyx, in which the star underwent its first eruption within five years of 1866 after many millennia of quiescence, followed by the six observed recurrent nova eruptions since 1890. This lack of distant ejecta is not consistent with scenarios in which T Pyx has been erupting continuously as a recurrent nova for many centuries or millennia.Comment: 27 pages, 10 figures, submitted to the Astrophysical Journa

    Inheritance of single copy nuclear genes (SCNGs) in artificial hybrids of Hesperocyparis arizonica x H. macrocarpa: Potential for utilization in the detection of hybridization in natural populations

    Get PDF
    Analyses were performed on 18 artificial hybrids from a cross of Hesperocyparis arizonica (male parent) x H. macrocarpa (female parent) using 9 single copy nuclear genes (SCNGs). Three SCNG were found to be informative: myb, 4CL and CnAIB2. Gene myb contained 5 variable sites, of which site 89 was homozygous (CC, TT) as was site 261 (GG, AA) and useful for the detection of hybridization. All 18 hybrids were heterozygous (CT and GA) at these 2 sites as predicted in hybrids. 4CL contained 8 variable sites, of which 1 site (591) was homozygous (TT, CC) and all 18 hybrids were heterozygous (TC) at this site as expected. CnAIP2 had two variable sites: 301 (AA, AC) and 554 (AG, AA). For site 301, 8 hybrids were AA, and 10 were AC as expected. For site 554, 10 hybrids were AA and 8 were AG, so neither would be useful for unequivocally identifying hybrids. The inheritance of variable sites for the three SCNGs followed simple co-occurrence. Examination of myb in the 18 hybrids revealed 2 cases of cross-over in the pollen gametes

    Simulating Radiating and Magnetized Flows in Multi-Dimensions with ZEUS-MP

    Full text link
    This paper describes ZEUS-MP, a multi-physics, massively parallel, message- passing implementation of the ZEUS code. ZEUS-MP differs significantly from the ZEUS-2D code, the ZEUS-3D code, and an early "version 1" of ZEUS-MP distributed publicly in 1999. ZEUS-MP offers an MHD algorithm better suited for multidimensional flows than the ZEUS-2D module by virtue of modifications to the Method of Characteristics scheme first suggested by Hawley and Stone (1995), and is shown to compare quite favorably to the TVD scheme described by Ryu et. al (1998). ZEUS-MP is the first publicly-available ZEUS code to allow the advection of multiple chemical (or nuclear) species. Radiation hydrodynamic simulations are enabled via an implicit flux-limited radiation diffusion (FLD) module. The hydrodynamic, MHD, and FLD modules may be used in one, two, or three space dimensions. Self gravity may be included either through the assumption of a GM/r potential or a solution of Poisson's equation using one of three linear solver packages (conjugate-gradient, multigrid, and FFT) provided for that purpose. Point-mass potentials are also supported. Because ZEUS-MP is designed for simulations on parallel computing platforms, considerable attention is paid to the parallel performance characteristics of each module. Strong-scaling tests involving pure hydrodynamics (with and without self-gravity), MHD, and RHD are performed in which large problems (256^3 zones) are distributed among as many as 1024 processors of an IBM SP3. Parallel efficiency is a strong function of the amount of communication required between processors in a given algorithm, but all modules are shown to scale well on up to 1024 processors for the chosen fixed problem size.Comment: Accepted for publication in the ApJ Supplement. 42 pages with 29 inlined figures; uses emulateapj.sty. Discussions in sections 2 - 4 improved per referee comments; several figures modified to illustrate grid resolution. ZEUS-MP source code and documentation available from the Laboratory for Computational Astrophysics at http://lca.ucsd.edu/codes/currentcodes/zeusmp2

    Patient-specific independent 3D GammaPlan quality assurance for Gamma Knife Perfexion radiosurgery

    Get PDF
    One of the most important aspects of quality assurance (QA) in radiation therapy is redundancy of patient treatment dose calculation. This work is focused on the patient-specific time and 3D dose treatment plan verification for stereotactic radiosurgery using Leksell Gamma Knife Perfexion (LGK PFX). The virtual model of LGK PFX was developed in MATLAB, based on the physical dimensions provided by the manufacturer. The ring-specific linear attenuation coefficients (LAC) and output factors (OFs) reported by the manufacturer were replaced by the measurement-based collimator size-specific OFs and a single LAC = 0.0065 mm-1. Calculation depths for each LGK PFX shot were obtained by ray-tracing technique, and the dose calculation formalism was similar to the one used by GammaPlan treatment planning software versions 8 and 9. The architecture of the QA process was based on the in-house online database search of the LGK PFX database search for plan-specific information. A series of QA phantom plans was examined to verify geometric and dosimetric accuracy of the software. The accuracy of the QA process was further evaluated through evaluation of a series of patient plans. The shot time/focus point dose verification for each shot took less than 1 sec/shot with full 3D isodose verification taking about 30 sec/shot on a desktop PC. GammaPlan database access time took less than 0.05 sec. The geometric accuracy (location of the point of maximum dose) of the phantom and patient plan was dependent on the resolution of the original dose matrix and was of the order of 1 dose element. Dosimetric accuracy of the independently calculated phantom and patient point (focus) doses was within 3.5% from the GammaPlan, with the mean = 2.3% and SD= 1.1%. The process for independent pretreatment patient-specific Gamma Knife Perfexion time and dose verification was created and validated

    Psychophysical evaluation of sweetness functions across multiple sweeteners

    Full text link
    Sweetness is one of the 5 prototypical tastes and is activated by sugars and non-nutritive sweeteners (NNS). The aim of this study was to investigate measures of sweet taste function [detection threshold (DT), recognition threshold (RT), and suprathreshold intensity ratings] across multiple sweeteners. Sixty participants, 18-52 years of age (mean age in years = 26, SD = ±7.8), were recruited to participate in the study. DT and RT were collected for caloric sweeteners (glucose, fructose, sucrose, erythritol) and NNS (sucralose, rebaudioside A). Sweetness intensity for all sweeteners was measured using a general Labeled Magnitude Scale. There were strong correlations between DT and RT of all 4 caloric sweeteners across people (r = 0.62-0.90, P < 0.001), and moderate correlations between DT and RT for both of the NNS (r = 0.39-0.48, P < 0.05); however, weaker correlations were observed between the DT or RT of the caloric sweeteners and NNS (r = 0.26-0.48, P < 0.05). The DT and RT of glucose and fructose were not correlated with DT or RT of sucralose (P > 0.05). In contrast, there were strong correlations between the sweetness intensity ratings of all sweeteners (r = 0.70-0.96, P < 0.001). This suggests those caloric sweeteners and NNS access at least partially independent mechanisms with respect to DT and RT measures. At suprathreshold level, however, the strong correlation between caloric sweeteners and NNS through weak, moderate, and strong intensity indicates a commonality in sweet taste mechanism for the perceived intensity range
    • 

    corecore