31 research outputs found

    Differences in HIV Natural History among African and Non-African Seroconverters in Europe and Seroconverters in Sub-Saharan Africa

    Get PDF
    Introduction It is unknown whether HIV treatment guidelines, based on resource-rich country cohorts, are applicable to African populations. Methods We estimated CD4 cell loss in ART-naïve, AIDS-free individuals using mixed models allowing for random intercept and slope, and time from seroconversion to clinical AIDS, death and antiretroviral therapy (ART) initiation by survival methods. Using CASCADE data from 20 European and 3 sub-Saharan African (SSA) cohorts of heterosexually-infected individuals, aged ≥15 years, infected ≥2000, we compared estimates between non-African Europeans, Africans in Europe, and Africans in SSA. Results Of 1,959 (913 non-Africans, 302 Europeans - African origin, 744 SSA), two-thirds were female; median age at seroconversion was 31 years. Individuals in SSA progressed faster to clinical AIDS but not to death or non-TB AIDS. They also initiated ART later than Europeans and at lower CD4 cell counts. In adjusted models, Africans (especially from Europe) had lower CD4 counts at seroconversion and slower CD4 decline than non-African Europeans. Median (95% CI) CD4 count at seroconversion for a 15–29 year old woman was 607 (588–627) (non-African European), 469 (442–497) (European - African origin) and 570 (551–589) (SSA) cells/µL with respective CD4 decline during the first 4 years of 259 (228–289), 155 (110–200), and 199 (174–224) cells/µL (p<0.01). Discussion Despite differences in CD4 cell count evolution, death and non-TB AIDS rates were similar across study groups. It is therefore prudent to apply current ART guidelines from resource-rich countries to African populations

    Minimally Invasive Surgery in Pediatric Surgical Oncology

    No full text
    The application of minimally invasive surgery (MIS) to resect pediatric solid tumors offers the potential for reduced postoperative morbidity with smaller wounds, less pain, fewer surgical site infections, decreased blood loss, shorter hospital stays, and less disruption to treatment regimens. However, significant controversy surrounds the question of whether a high-fidelity oncologic resection of childhood cancers can be achieved through MIS. This review outlines the diverse applications of MIS to treat pediatric malignancies, up to and including definitive resection. This work further summarizes the current evidence supporting the efficacy of MIS to accomplish a definitive, oncologic resection as well as appropriate patient selection criteria for the minimally invasive approach

    Biological Drivers of Wilms Tumor Prognosis and Treatment

    No full text
    Prior to the 1950s, survival from Wilms tumor (WT) was less than 10%. Today, a child diagnosed with WT has a greater than 90% chance of survival. These gains in survival rates from WT are attributed largely to improvements in multimodal therapy: Enhanced surgical techniques leading to decreased operative mortality, optimization of more effective chemotherapy regimens (specifically, dactinomycin and vincristine), and inclusion of radiation therapy in treatment protocols. More recent improvements in survival, however, can be attributed to a growing understanding of the molecular landscape of Wilms tumor. Particularly, identification of biologic markers portending poor prognosis has facilitated risk stratification to tailor therapy that achieves the best possible outcome with the least possible toxicity. The aim of this review is to (1) outline the specific biologic markers that have been associated with prognosis in WT and (2) provide an overview of the current use of biologic and other factors to stratify risk and assign treatment accordingly

    Pediatric Solid Tumors in Resource-Constrained Settings: A Review of Available Evidence on Management, Outcomes, and Barriers to Care

    No full text
    International disparities in outcomes from pediatric solid tumors remain striking. Herein, we review the current literature regarding management, outcomes, and barriers to care for pediatric solid tumors in low- and middle-income countries (LMICs). In sub-Saharan Africa, Wilms Tumor represents the most commonly encountered solid tumor of childhood and has been the primary target of recent efforts to improve outcomes in low-resource settings. Aggressive and treatment-resistant tumor biology may play a role in poor outcomes within certain populations, but socioeconomic barriers remain the principal drivers of preventable mortality. Management protocols that include measures to address socioeconomic barriers have demonstrated early success in reducing abandonment of therapy. Further work is required to improve infrastructure and general pediatric care to address disparities

    SIX2 and CITED1, markers of nephronic progenitor self-renewal, remain active in primitive elements of Wilms\u27 tumor

    Get PDF
    Purpose: SIX2 and CITED1 are transcriptional regulators that specify self-renewing nephronic progenitor cells of the embryonic kidney. We hypothesized that SIX2, which promotes and maintains this stem cell population, and CITED1 remain active in Wilms\u27 tumor (WT). Methods: To evaluate expression domains and the pathogenic significance of SIX2 and CITED1 across WT, the Children\u27s Oncology Group provided 40 WT specimens of stages I to IV (n = 10 per stage), which were enriched for unfavorable histology (n = 20) and treatment failure (relapse or death, n = 20). SIX2 and CITED1 protein expression was evaluated qualitatively (immunohistochemistry) and quantitatively (Western blot, or WB). Gene transcription was estimated using quantitative real-time polymerase chain reaction (qRT-PCR). Results: SIX2 was visualized by immunohistochemistry in 36 (94.7%) of 38 specimens. Protein and messenger RNA expression of SIX2 were quantitatively similar across all stages of disease (P = .48 WB; P = 0.38 qPCR), in favorable or unfavorable histology (P = 0.51 WB; P = 0.58 qPCR), and in treatment failure or success (P = 0.86 WB; P = 0.49 qPCR). Although CITED1 expression paralleled SIX2 qualitatively, no quantitative correlation between SIX2 and CITED1 expression was observed (Spearman correlation coefficient, 0.28; P = 0.08). As in the fetal kidney, overlapping, but also distinct, WT cellular expression domains were observed between SIX2 and CITED1. Conclusion: SIX2 and CITED1 remain active across all disease characteristics of WT. Activity of these genes in WT potentially identifies a population of self-renewing cancer cells that exhibit an embryonic, stemlike phenotype. Taken together, these transcriptional regulators may be fundamental to WT cellular self-renewal and may represent targets for novel therapies that promote terminal differentiation

    3D printed model aiding in minimally invasive thoracoabdominal ganglioneuroblastoma resection: A case report

    No full text
    The creation of 3D models of tumors and their surrounding structures is becoming a useful tool for preoperative and intraoperative surgical planning. This case details the presentation and oncologic course of a 2.5-year old female patient with a thoracoabdominal ganglioneuroblastoma. Upon initial diagnosis, her tumor was encasing the aorta and abutting the left renal vein and was not a candidate for resection. She underwent alternative therapy for several years that was not standard of care before returning to our institution. A 3D model of the tumor was created based on pre-operative computerized tomography (CT) images, and the physical model demonstrated clear planes and lack of invasion into surrounding structures, making surgical resection an option. The 3D model was then utilized as a guide intraoperatively for the laparoscopic operation during difficult portions of the case. The tumor was successfully removed in entirety, and the patient was discharged following an uneventful post-operative course. The use of 3D printing in a pediatric abdominal oncologic case is novel, and could be a beneficial tool in future cases to complement a minimally invasive surgical approach

    CITED1 Expression in Wilms' Tumor and Embryonic Kidney1

    Get PDF
    Wilms' tumors, or nephroblastomas, are thought to arise from abnormal postnatal retention and dysregulated differentiation of nephrogenic progenitor cells that originate as a condensed metanephric mesenchyme within embryonic kidneys. We have previously shown that the transcriptional regulator CITED1 (CBP/p300-interacting transactivators with glutamic acid [E]/aspartic acid [D]-rich C-terminal domain) is expressed exclusively in these nephrogenic progenitor cells and is downregulated as they differentiate to form nephronic epithelia. In the current study, we show that CITED1 expression persists in blastemal cell populations of both experimental rat nephroblastomas and human Wilms' tumors, and that primary human Wilms' tumors presenting with disseminated disease show the highest level of CITED1 expression. Unlike the predominantly cytoplasmic subcellular localization of CITED1 in the normal developing kidney, CITED1 is clearly detectable in the nuclear compartment of Wilms' tumor blastema. These findings indicate that CITED1 is a marker of primitive blastema in Wilms' tumors and suggest that persistent expression and/or altered subcellular localization of CITED1 in the condensed metanephric mesenchyme could play a role in Wilms' tumor initiation and pathogenesis

    SIX2 Effects on Wilms Tumor Biology

    No full text
    Wilms tumor (WT) blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM), in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2) is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path
    corecore