27 research outputs found

    Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species

    Get PDF
    The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, Bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range

    Reappraisal of microsurgical decompression and neurectomy of the occipital nerve in the treatment of occipital neuralgia

    No full text
    The subventricular zone (SVZ) is greatly expanded in primates with gyrencephalic cortices and is thought to be absent from vertebrates with three-layered, lissencephalic cortices, such as the turtle. Recent work in rodents has shown that Tbr2-expressing neural precursor cells in the SVZ produce excitatory neurons for each cortical layer in the neocortex. Many excitatory neurons are generated through a two-step process in which Pax6-expressing radial glial cells divide in the VZ to produce Tbr2-expressing intermediate progenitor cells, which divide in the SVZ to produce cortical neurons. We investigated the evolutionary origin of SVZ neural precursor cells in the prenatal cerebral cortex by testing for the presence and distribution of Tbr2-expressing cells in the prenatal cortex of reptilian and avian species. We found that mitotic Tbr2(+) cells are present in the prenatal cortex of lizard, turtle, chicken, and dove. Furthermore, Tbr2(+) cells are organized into a distinct SVZ in the dorsal ventricular ridge (DVR) of turtle forebrain and in the cortices of chicken and dove. Our results are consistent with the concept that Tbr2(+) neural precursor cells were present in the common ancestor of mammals and reptiles. Our data also suggest that the organizing principle guiding the assembly of Tbr2(+) cells into an anatomically distinct SVZ, both developmentally and evolutionarily, may be shared across vertebrates. Finally, our results indicate that Tbr2 expression can be used to test for the presence of a distinct SVZ and to define the boundaries of the SVZ in developing cortices. J. Comp. Neurol. 524:433-447, 2016. © 2015 Wiley Periodicals, Inc

    Phosphatide und komplexe Lipide

    No full text

    Geographic variation in aggressive signalling behaviour of the Jacky dragon

    No full text
    Signal diversification is often the product of sexual and/or natural selection and may be accompanied by genetic differentiation or simply reflect a plastic response to social and environmental variables.We use an agamid lizard endemic to Australia, the Jacky dragon (Amphibolurus muricatus), to examine the relationships between population relatedness, morphology and signalling behaviour. We also tested whether males are able to discriminate among rivals from different populations and whether they respond more aggressively to more closely related populations. We studied three populations, two of which belong to the same genetic clade. Individuals from the two most closely related populations were also more similar in morphology than lizards from the third, more distant, population. However, all three populations differed in characteristics of their signalling behaviour including latency to display and the interval between displays. In addition, animals from all populations showed similar levels of aggression when matched with individuals from the same or different populations in staged trials and thus did not show evidence of population-level discrimination. We argue that display variation might be a consequence of behavioural plasticity and that, despite difference in genetic structure, morphology and behaviour, this species retains a cohesive communication system.Macquarie UniversityUniversidad de Costa RicaConsejo Nacional para Investigaciones Científicas y Tecnológicas de Costa Rica/FI-252-11/CONYCIT/Costa RicaUCR::Sedes Regionales::Sede del Carib

    Dietary effects on fatty acid composition in muscle tissue of juvenile European eel, Anguilla anguilla (L.)

    Get PDF
    The role of intracontinental migration patterns of European eel (Anguilla anguilla) receives more and more recognition in both ecological studies of the European eel and possible management measures, but small-scale patterns proved to be challenging to study. We experimentally investigated the suitability of fatty acid trophic markers to elucidate the utilization of feeding habitats. Eight groups of juvenile European eels were fed on eight different diets in a freshwater recirculation system at 20°C for 56 days. Three groups were fed on freshwater diets (Rutilus rutilus, Chironomidae larvae, and Gammarus pulex) and four groups were reared on diets of a marine origin (Clupea harengus, Crangon crangon, Mysis spec., and Euphausia superba) and one on commercial pellets used in eel aquaculture. Fatty acid composition (FAC) of diets differed significantly with habitat. FAC of eel muscle tissue seemed to be rather insensitive to fatty acids supplied with diet, but the general pattern of lower n3:n6 and EPA:ARA ratios in freshwater prey organisms could be traced in the respective eels. Multivariate statistics of the fatty acid composition of the eels resulted in two distinct groups representing freshwater and marine treatments. Results further indicate the capability of selectively restraining certain fatty acids in eel, as e.g. the n3:n6 ratio in all treatments was <4, regardless of dietary n3:n6. In future studies on wild eel, these measures can be used to elucidate the utilization of feeding habitats of individual European eel
    corecore