801 research outputs found
High Resolution Rapid Response observations of compact radio sources with the Ceduna Hobart Interferometer (CHI)
Context. Frequent, simultaneous observations across the electromagnetic
spectrum are essential to the study of a range of astrophysical phenomena
including Active Galactic Nuclei. A key tool of such studies is the ability to
observe an object when it flares i.e. exhibits a rapid and significant increase
in its flux density.
Aims. We describe the specific observational procedures and the calibration
techniques that have been developed and tested to create a single baseline
radio interferometer that can rapidly observe a flaring object. This is the
only facility that is dedicated to rapid high resolution radio observations of
an object south of -30 degrees declination. An immediate application is to
provide rapid contemporaneous radio coverage of AGN flaring at {\gamma}-ray
frequencies detected by the Fermi Gamma-ray Space Telescope.
Methods. A single baseline interferometer was formed with radio telescopes in
Hobart, Tasmania and Ceduna, South Australia. A software correlator was set up
at the University of Tasmania to correlate these data.
Results. Measurements of the flux densities of flaring objects can be made
using our observing strategy within half an hour of a triggering event. These
observations can be calibrated with amplitude errors better than 15%. Lower
limits to the brightness temperatures of the sources can also be calculated
using CHI.Comment: 6 pages, 6 figures, 1 table. Accepted for publication in A&
Crystal and solution structures of human oncoprotein Musashi‐2 N‐terminal RNA recognition motif 1
This work is licensed under a Creative Commons Attribution 4.0 International License.Musashi‐2 (MSI2) belongs to Musashi family of RNA binding proteins (RBP). Like Musashi‐1 (MSI1), it is overexpressed in a variety of cancers and is a promising therapeutic target. Both MSI proteins contain two N‐terminal RNA recognition motifs and play roles in posttranscriptional regulation of target mRNAs. Previously, we have identified several inhibitors of MSI1, all of which bind to MSI2 as well. In order to design MSI2‐specific inhibitors and compare the differences of binding mode of the inhibitors, we set out to solve the structure of MSI2‐RRM1, the key motif that is responsible for the binding. Here, we report the crystal structure and the first NMR solution structure of MSI2‐RRM1, and compare these to the structures of MSI1‐RBD1 and other RBPs. A high degree of structural similarity was observed between the crystal and solution NMR structures. MSI2‐RRM1 shows a highly similar overall folding topology to MSI1‐RBD1 and other RBPs. The structural information of MSI2‐RRM1 will be helpful for understanding MSI2‐RNA interaction and for guiding rational drug design of MSI2‐specific inhibitors
Significant Limb-Brightening in the Inner Parsec of Markarian 501
We present three 43 GHz images and a single 86 GHz image of Markarian 501
from VLBA observations in 2005. The 86 GHz image shows a partially resolved
core with a flux density of about 200 mJy and a size of about 300 Schwarzschild
radii, similar to recent results by Giroletti et al. Extreme limb-brightening
is found in the inner parsec of the jet in the 43 GHz images, providing strong
observational support for a `spine-layer' structure at this distance from the
core. The jet is well resolved transverse to its axis, allowing Gaussian model
components to be fit to each limb of the jet. The spine-layer brightness ratio
and relative sizes, the jet opening angle, and a tentative detection of
superluminal motion in the layer are all discussed.Comment: Astrophysical Journal Letters, accepted for January 1, 2009 issu
Development of a new screening tool for neuromotor development in children aged two – the neuromotor 5 min exam 2-year-old version (N5E2)
Acknowledgement This study is a part of the project related to the Japan Environment and Children’s Study (JECS) that is conducted and funded by the Ministry of Environment of Japan.Peer reviewedPostprin
Reconfiguration of the proteasome during chaperone-mediated assembly
The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt C-terminal tails inserting into pockets of the α ring1–4. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit5–10. We report that the base subassembly of the proteasome, which includes the Rpt ring, forms a high affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6, and Rpn14. Chaperone-mediated dissociation was abrogated by a nonhydrolyzable ATP analog, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3 pocket. Although the Rpt6 tail is not visualized within an α pocket in mature proteasomes2–4, it inserts into the α2/α3 pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme
Maintaining musculoskeletal health using a behavioural therapy approach : a population-based randomised controlled trial (the MAmMOTH Study)
Acknowledgements: The study was funded by Arthritis Research UK (now Versus Arthritis) grant number: 20748. Costs for delivery of the intervention were provided by NHS Grampian, NHS Greater Glasgow and Clyde, and NHS Highland. The funder of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. We acknowledge the contribution of the trial steering committee to the successful conduct of the study. The members were Professor Ernest Choy (Cardiff University), Professor Tamar Pincus (Royal Holloway, University of London) and Gordon Taylor (Bath University). We thank Brian Taylor and Mark Forrest from the Centre for Healthcare Randomised Trials (CHaRT) at the University of Aberdeen for their technical assistance and Professor Graeme MacLennan, Director of CHaRT, for methodological input. Professor John Norrie (originally University of Aberdeen now University of Edinburgh) and Dr. Majid Artus (originally Keele University, now the Osmaston surgery, Derbyshire) were study investigators at the time of grant award but subsequently left the study. We thank Kathy Longley (a representative of Fibromyalgia Action UK) for her input to the grant application and the project as well as from members of the public on the University of Aberdeen College of Life Sciences and Medicine Research Interest Group. The prioritisation of “Prevention of chronic pain” arose from a 2012 meeting of the Arthritis Research UK Clinical Study Group in Pain to which patients contributed.Peer reviewedPostprintsupplementary_datasupplementary_dat
Body condition changes at sea: onboard calculation and telemetry of body density in diving animals
This study was supported by grants from the Office of Naval Research N00014-18-1-2822, DoD SERDP contract W912HQ20C0056, IPEV (Institut Paul Emile Victor) under the Antarctic research program 109 (C. Barbraud) and 1201 (C. Gilbert & C. Guinet), and CNES-TOSCA as part of the SNO-MEMO.The ability of marine mammals to accumulate sufficient lipid energy reserves is vital for mammals' survival and successful reproduction. However, long-term monitoring of at-sea changes in body condition, specifically lipid stores, has only been possible in elephant seals performing prolonged drift dives (low-density lipids alter the rates of depth change while drifting). This approach has limited applicability to other species. Using hydrodynamic performance analysis during transit glides, we developed and validated a novel satellite-linked data logger that calculates real-time changes in body density (∝lipid stores). As gliding is ubiquitous amongst divers, the system can assess body condition in a broad array of diving animals. The tag processes high sampling rate depth and three-axis acceleration data to identify 5 s high pitch angle glide segments at depths >100 m. Body density is estimated for each glide using gliding speed and pitch to quantify drag versus buoyancy forces acting on the gliding animal. We used tag data from 24 elephant seals (Mirounga spp.) to validate the onboard calculation of body density relative to drift rate. The new tags relayed body density estimates over 200 days and documented lipid store accumulation during migration with good correspondence between changes in body density and drift rate. Our study provided updated drag coefficient values for gliding (Cd,f = 0.03) and drifting (Cd,s = 0.12) elephant seals, both substantially lower than previous estimates. We also demonstrated post-hoc estimation of the gliding drag coefficient and body density using transmitted data, which is especially useful when drag parameters cannot be estimated with sufficient accuracy before tag deployment. Our method has the potential to advance the field of marine biology by switching the research paradigm from indirectly inferring animal body condition from foraging effort to directly measuring changes in body condition relative to foraging effort, habitat, ecological factors and anthropogenic stressors in the changing oceans. Expanding the method to account for diving air volumes will expand the system's applicability to shallower-diving (<100 m) species, facilitating real-time monitoring of body condition in a broad range of breath-hold divers.Publisher PDFPeer reviewe
Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic
This study was funded by Statoil and the Norwegian Polar Institute’s ICE Centre. The Norwegian Polar Institute, WWF and various NRC projects have also contributed to the base-line capture-recapture programme that financed telemetric deployments.Polar bears are ice-associated marine mammals that are known to swim and dive, yet their aquatic behaviour is poorly documented. Reductions in Arctic sea ice are clearly a major threat to this species, but understanding polar bears' potential behavioural plasticity with respect to the ongoing changes requires knowledge of their swimming and diving skills. This study quantified time spent in water by adult female polar bears (n = 57) via deployment of various instruments bearing saltwater switches, and in some case pressure sensors (79 deployments, 64.8 bear-years of data). There were marked seasonal patterns in aquatic behaviour, with more time spent in the water during summer, when 75% of the polar bears swam daily (May-July). Females with cubs-of-the-year spent less time in the water than other females from den emergence (April) until mid-summer, consistent with small cubs being vulnerable to hypothermia and drowning. Some bears undertook notable long-distance-swims. Dive depths up to 13.9 m were recorded, with dives ≥5 m being common. The considerable swimming and diving capacities of polar bears might provide them with tools to exploit aquatic environments previously not utilized. This is likely to be increasingly important to the species' survival in an Arctic with little or no persistent sea ice.Publisher PDFPeer reviewe
A non-contacting resistivity imaging method for characterizing whole round core while in its liner
Recent laboratory experimentation has shown that non-contacting whole-core resistivity imaging, with azimuthal discrimination, is feasible. It has shown the need for very
sensitive coil pairs in order to provide resistivity measurements at the desired resolution.
Independent high-resolution 'galvanic' resistivity estimations show the 'non-contacting' measurements to be directly proportional to the resistivity of core samples. The response of the technique to a variety of synthetic 'structures' is presented. A whole-core image of a dipping layer is used to demonstrate the three dimensional response of the technique and to show that the resolution of the measurements is of the order of 10mm.
Experiments are described which show that the technique is capable of investigating to different depths within the whole round core. The results agree with theoretical predictions and indicate that the technique has the potential to assess invasion near the surface of the
core. The technique is intrinsically safe and has the potential to be packaged in a form that would be suitable for whole-core imaging at the well site, or laboratory, without taking core from their liners. Thus it is possible to acquire information crucial for core selection, in addition to acquiring resistivity data at a resolution not too far removed from that of the downhole imaging tools
- …