14,714 research outputs found

    A concept for reducing oceanic separation minima through the use of a TCAS-derived CDTI

    Get PDF
    A concept for using a cockpit display of traffic information (CDTI), as derived from a modified version of the Traffic Alert and Collision Avoidance System 2 (TCAS 2), to support reductions in air traffic separation minima for an oceanic track system is presented. The concept, and the TCAS modifications required to support it, are described. The feasibility of the concept is examined from a number of standpoints, including expected benefits, maximum alert rates, and possible transition strategies. Various implementation issues are analyzed. Pilot procedures are suggested for dealing with alert situations. Possible variations of the concept are also examined. Finally, recommendations are presented for other studies and simulation experiments which can be used to further verify the feasibility of the concept

    Editors\u27 Notes

    Get PDF

    Soft modes near the buckling transition of icosahedral shells

    Full text link
    Icosahedral shells undergo a buckling transition as the ratio of Young's modulus to bending stiffness increases. Strong bending stiffness favors smooth, nearly spherical shapes, while weak bending stiffness leads to a sharply faceted icosahedral shape. Based on the phonon spectrum of a simplified mass-and-spring model of the shell, we interpret the transition from smooth to faceted as a soft-mode transition. In contrast to the case of a disclinated planar network where the transition is sharply defined, the mean curvature of the sphere smooths the transitition. We define elastic susceptibilities as the response to forces applied at vertices, edges and faces of an icosahedron. At the soft-mode transition the vertex susceptibility is the largest, but as the shell becomes more faceted the edge and face susceptibilities greatly exceed the vertex susceptibility. Limiting behaviors of the susceptibilities are analyzed and related to the ridge-scaling behavior of elastic sheets. Our results apply to virus capsids, liposomes with crystalline order and other shell-like structures with icosahedral symmetry.Comment: 28 pages, 6 figure

    Nonaffine Correlations in Random Elastic Media

    Full text link
    Materials characterized by spatially homogeneous elastic moduli undergo affine distortions when subjected to external stress at their boundaries, i.e., their displacements \uv (\xv) from a uniform reference state grow linearly with position \xv, and their strains are spatially constant. Many materials, including all macroscopically isotropic amorphous ones, have elastic moduli that vary randomly with position, and they necessarily undergo nonaffine distortions in response to external stress. We study general aspects of nonaffine response and correlation using analytic calculations and numerical simulations. We define nonaffine displacements \uv' (\xv) as the difference between \uv (\xv) and affine displacements, and we investigate the nonaffinity correlation function G=\mathcal{G} = and related functions. We introduce four model random systems with random elastic moduli induced by locally random spring constants, by random coordination number, by random stress, or by any combination of these. We show analytically and numerically that G\mathcal{G} scales as A |\xv|^{-(d-2)} where the amplitude AA is proportional to the variance of local elastic moduli regardless of the origin of their randomness. We show that the driving force for nonaffine displacements is a spatial derivative of the random elastic constant tensor times the constant affine strain. Random stress by itself does not drive nonaffine response, though the randomness in elastic moduli it may generate does. We study models with both short and long-range correlations in random elastic moduli.Comment: 22 Pages, 18 figures, RevTeX

    Self-similar impulsive capillary waves on a ligament

    Full text link
    We study the short-time dynamics of a liquid ligament, held between two solid cylinders, when one is impulsively accelerated along its axis. A set of one-dimensional equations in the slender-slope approximation is used to describe the dynamics, including surface tension and viscous effects. An exact self-similar solution to the linearized equations is successfully compared to experiments made with millimetric ligaments. Another non-linear self-similar solution of the full set of equations is found numerically. Both the linear and non-linear solutions show that the axial depth at which the liquid is affected by the motion of the cylinder scales like t\sqrt{t}. The non-linear solution presents the peculiar feature that there exists a maximum driving velocity UU^\star above which the solution disappears, a phenomenon probably related to the de-pinning of the contact line observed in experiments for large pulling velocities

    The experiences of women with polycystic ovary syndrome on a very low-calorie diet

    Get PDF
    The research was funded by an educational grant from LighterLife. Broom was the Medical Director for LighterLife at the time of the research. Johnson is the Head of Nutrition and Research at LighterLife. The authors report no other conflicts of interest in this work.Peer reviewedPublisher PD

    Research study of some RAM antennas Final report, 18 Nov. 1964 - 18 Jun. 1965

    Get PDF
    Input impedance and radiation pattern determinations for cylindrical gap, waveguide excited and circular waveguide slot antenna array

    Orientation and solvatochromism of dyes in liquid crystals.

    Get PDF
    The orientation and solvatochromism of some dye molecules in a liquid crystal have been investigated. Interactions with the host and the structure of the dye molecule affect the macroscopic alignment of dichroic dye molecules in a liquid crystal: It was observed that some dye molecules show a large bathochromic shift of their absorption maxima in the liquid crystal host relative to the situation in isotropic solvents. It is suggested that this is due to the occurrence of a much weaker reaction field in the anisotropic, rigid host. These dye molecules show little or no apparent order in the anisotropic host despite the observation of a reduction in the electro optic switching time when the dye is present. The highest degree of macroscopic alignment was observed for a merocyanine compound, which showed the smallest solvatochromic shift in the liquid crystal host. These results are discussed in terms of the steric, dipolar and hydrogen bond interactions between the guest and the host
    corecore