1,016 research outputs found

    Cognitive Models as Bridge between Brain and Behavior

    Get PDF
    How can disparate neural and behavioral measures be integrated? Turner and colleagues propose joint modeling as a solution. Joint modeling mutually constrains the interpretation of brain and behavioral measures by exploiting their covariation structure. Simultaneous estimation allows for more accurate prediction than would be possible by considering these measures in isolation

    Bidirectional Influences of Information Sampling and Concept Learning

    Get PDF
    Contemporary models of categorization typically tend to sidestep the problem of how information is initially encoded during decision making. Instead, a focus of this work has been to investigate how, through selective attention, stimulus representations are “contorted” such that behaviorally relevant dimensions are accentuated (or “stretched”), and the representations of irrelevant dimensions are ignored (or “compressed”). In high-dimensional real-world environments, it is computationally infeasible to sample all available information, and human decision makers selectively sample information from sources expected to provide relevant information. To address these and other shortcomings, we develop an active sampling model, Sampling Emergent Attention (SEA), which sequentially and strategically samples information sources until the expected cost of information exceeds the expected benefit. The model specifies the interplay of two components, one involved in determining the expected utility of different information sources and the other in representing knowledge and beliefs about the environment. These two components interact such that knowledge of the world guides information sampling, and what is sampled updates knowledge. Like human decision makers, the model displays strategic sampling behavior, such as terminating information search when sufficient information has been sampled and adaptively adjusting the search path in response to previously sampled information. The model also shows human-like failure modes. For example, when information exploitation is prioritized over exploration, the bidirectional influences between information sampling and learning can lead to the development of beliefs that systematically differ from reality

    What the Success of Brain Imaging Implies about the Neural Code

    Get PDF
    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite limitations in what fMRI measures, implies that certain neural coding schemes are more likely than others. For fMRI to be successful given its low temporal and spatial resolution, the neural code must be smooth at the sub-voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we evaluate a number of reasonable coding schemes and demonstrate that only a subset are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of neural code and ventral stream, as well as what can be successfully investigated with fMRI

    Dynamic updating of hippocampal object representations reflects new conceptual knowledge

    Get PDF
    Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal

    The Costs and Benefits of Goal-Directed Attention in Deep Convolutional Neural Networks

    Get PDF
    People deploy top-down, goal-directed attention to accomplish tasks, such as finding lost keys. By tuning the visual system to relevant information sources, object recognition can become more efficient (a benefit) and more biased toward the target (a potential cost). Motivated by selective attention in categorisation models, we developed a goal-directed attention mechanism that can process naturalistic (photographic) stimuli. Our attention mechanism can be incorporated into any existing deep convolutional neural networks (DCNNs). The processing stages in DCNNs have been related to ventral visual stream. In that light, our attentional mechanism incorporates top-down influences from prefrontal cortex (PFC) to support goal-directed behaviour. Akin to how attention weights in categorisation models warp representational spaces, we introduce a layer of attention weights to the mid-level of a DCNN that amplify or attenuate activity to further a goal. We evaluated the attentional mechanism using photographic stimuli, varying the attentional target. We found that increasing goal-directed attention has benefits (increasing hit rates) and costs (increasing false alarm rates). At a moderate level, attention improves sensitivity (i.e. increases d′) at only a moderate increase in bias for tasks involving standard images, blended images and natural adversarial images chosen to fool DCNNs. These results suggest that goal-directed attention can reconfigure general-purpose DCNNs to better suit the current task goal, much like PFC modulates activity along the ventral stream. In addition to being more parsimonious and brain consistent, the mid-level attention approach performed better than a standard machine learning approach for transfer learning, namely retraining the final network layer to accommodate the new task

    Subjective value and decision entropy are jointly encoded by aligned gradients across the human brain

    Get PDF
    Recent work has considered the relationship between value and confidence in both behavioural and neural representation. Here we evaluated whether the brain organises value and confidence signals in a systematic fashion that reflects the overall desirability of options. If so, regions that respond to either increases or decreases in both value and confidence should be widespread. We strongly confirmed these predictions through a model-based fMRI analysis of a mixed gambles task that assessed subjective value (SV) and inverse decision entropy (iDE), which is related to confidence. Purported value areas more strongly signalled iDE than SV, underscoring how intertwined value and confidence are. A gradient tied to the desirability of actions transitioned from positive SV and iDE in ventromedial prefrontal cortex to negative SV and iDE in dorsal medial prefrontal cortex. This alignment of SV and iDE signals could support retrospective evaluation to guide learning and subsequent decisions
    • …
    corecore