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Notions of mechanism, emergence, reduction and explanation are all tied to
levels of analysis. I cover the relationship between lower and higher levels,
suggest a level of mechanism approach for neuroscience in which the com-
ponents of a mechanism can themselves be further decomposed and argue
that scientists’ goals are best realized by focusing on pragmatic concerns
rather than on metaphysical claims about what is ‘real’. Inexplicably, neuro-
scientists are enchanted by both reduction and emergence. A fascination
with reduction is misplaced given that theory is neither sufficiently developed
nor formal to allow it, whereas metaphysical claims of emergence bring
physicalism into question. Moreover, neuroscience’s existence as a discipline
is owed to higher-level concepts that prove useful in practice. Claims of
biological plausibility are shown to be incoherent from a level of mechanism
view and more generally are vacuous. Instead, the relevant findings to address
should be specified so that model selection procedures can adjudicate between
competing accounts. Model selection can help reduce theoretical confusions
and direct empirical investigations. Although measures themselves, such as
behaviour, blood-oxygen-level-dependent (BOLD) and single-unit recordings,
are not levels of analysis, like levels, no measure is fundamental and
understanding how measures relate can hasten scientific progress.

This article is part of the theme issue ‘Key relationships between
non-invasive functional neuroimaging and the underlying neuronal activity’.
1. Introduction
Although levels of analysis are frequently discussed in neuroscience, cognitive
science and philosophy, widespread confusion persists over what a level is and
how various levels relate to one another [1,2]. This confusion is a headwind to
scientific progress because it leads to misplaced claims about which data
sources are fundamental and what is biologically plausible. Here, I consider
what is gained and lost across various levels of analysis. A firm conceptual
grasp of levels of analysis is necessary for common terms in neuroscience to
have meaning. Notions of mechanism, biological plausibility, emergence and
reduction are all tied to levels of analysis.

In this contribution, the connections between key concepts in neuroscience
and levels of analysis will be unpacked. I will consider whence levels
in neuroscience arise and whether neural measures at different granularities,
such as cellular versus blood-oxygen-level-dependent (BOLD) response, consti-
tute different levels of analyses. Other limits on the applicability of levels of
analyses will be considered. In particular, I will suggest that claims of biological
plausibility are better cast as (and resolved through) model selection than by
appeal to the level of analysis that makes contact with ‘true’ biology. Indeed,
the latter position, while common in neuroscience, will be shown to be incoher-
ent. Under the best of circumstances, claims of biological plausibility do not offer
value beyond what could be gained from model selection procedures, which
specify the relevant findings and competing accounts. In other cases, claims of
biological plausibility can be vacuous and lead to confusion.

Marr’s tripartite hierarchy [3] is perhaps themost well-known and influential
organization of levels in neuroscience. In brief, the computational level is the top
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Figure 1. Marr’s levels compared to abstraction layers in computing with examples of each. Marr’s levels are clearly influenced by abstraction layers in computer
science, though Marr’s levels are less fine grain, particularly for levels of interest to many neuroscientists. On the left, an example from category learning is shown in
which an algorithmic model [5] was fit to behaviour and its internal representations are used to interpret BOLD response [6]. On the right, a sorting algorithm
addressed the computational level problem of sorting and was implemented by a digital computer. The abstraction layers in computing make clear that moving to a
lower layer introduces additional detail (more information) about the computation whereas higher layers introduce abstract constructs that can be realized in mul-
tiple ways. (Online version in colour.)
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level where the problem to be addressed is specified. Rather
than detail the form of a potential solution, the computational
level simply states the problem (i.e. the input–output mapping
desired). For example, for object recognition, a computational
level account could involve naming various images under var-
ious conditions. The next level is the algorithmic level. As its
name indicates, the algorithmic level is concerned with how
the function specified at the computational level is computed
(i.e. the processes and representations used). For example,
if the computational level task were to sort an array of num-
bers in ascending order, then the algorithmic level would
specify a possible approach, such as bubble sort or quicksort.
Different algorithms may solve the computational task in
different ways, have different runtimes, etc., but they should
all conform to the computational level goal (e.g. correctly
sort the array). Finally, the implementational level describes
the physical substrate for the computation (e.g. the computer
that executes quicksort).

The previous examples from computer science are apro-
pos as Marr was clearly inspired by abstraction layers, a
central concept in computer science [4]. Note that Marr’s
top two levels, the computational and algorithmic, neatly
map onto the top two levels in a common abstraction hierar-
chy in computing (figure 1). Abstraction layers in computing
can contain finer-grain levels, including multiple levels
describing the physical computing device. By contrast, Marr
effectively lumped all of neuroscience into a single imple-
mentational level, which might partly explain why some
neuroscientists find his hierarchy inadequate [7].

Although Marr’s scheme is highly influential, there are
alternatives [8]. Moreover, there is no reason to restrict to
three levels. For example, there are a number of four-level
schemes in cognitive science [9–12]. Indeed, Bechtel &
Richardon’s [13] mechanistic approach can be characterized
as a ‘levels of mechanism’ hierarchy in which there is not a
fixed number of levels. For example, a car can be seen as
a mechanism consisting of interacting parts, such as an
engine, drivetrain, steering wheel and brakes. What is a com-
ponent of a mechanism itself can be further decomposed into
its own mechanism (e.g. braking system) and so forth, with
no limit except those imposed by particle physics.

The mechanistic decomposition approach was conceived
with an eye toward explanation in biology. Craver [14] uses
an example from neuroscience to motivate the levels of mech-
anism view, which contains multiple levels of mechanism:
namely spatial memory, spatial map formation, cellular and
molecular levels. Like the car example, a component in the
mechanism at one level can itself decompose at the next
lower level [15]. For example, at the molecular level, an
NMDA receptor is a component of the LTP mechanism,
which in turn is a component of the hippocampus, which
in turn is a component in spatial memory.

Although theories in neuroscience can fall short (see [16]
for criticisms of some prominent imaging work in cognitive
neuroscience), most neuroscientists would seem to aspire to
this type of multi-level mechanistic explanation. Notice that
in such a multi-level explanation, there is no level that is more
biologically plausible or preferred in some general sense.
Although there can be a tendency in neuroscience to dismiss
higher level explanations (e.g. a cognitive model) as biologically
implausible or not real in some sense, this makes as much sense
as stating that a sorting algorithm, a car’s engine, the heart, or
the hippocampus is not real because it can be further decom-
posed. In other fields, such as economics, the status of
macroeconomics, which is concerned with aggregate activity
in the economy, is not threatened by the existence of
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microeconomics, which is concernedwith the behaviour of indi-
viduals and firms that give rise to the aggregate. Recently, there
has been a call for neuroscientists to reconsider their reductionist
biases in the interest of scientific progress [17].

Of course, building multi-level explanations is challen-
ging. For example, mechanisms will rarely decompose neatly
into localizable, independent components [13]. In some mech-
anisms, such as artificial neural networks, the components
interact to such a degree that system behaviour can only be
understood in terms of the components’ overall organization
[13]. Moreover, mechanisms may interact (e.g. share a com-
ponent). In such cases, the degree of intra- versus inter-
system interactions will determine how successfully the
system can be decomposed [18]. These intersections could
offer opportunities for mechanistic integration. For example,
the mechanism for protein synthesis was discovered by mol-
ecular biologists approaching the problem in a bottom-up
manner and biochemists proceeding in a top-down manner
until both groups met in the middle at RNA [19].

Though challenging, buildingmulti-level explanations can
be satisfying and increase confidence in findings across levels.
For example, Hebbian learning (i.e. cells that fire together, wire
together) requires a coincidence detector to gate learning, and
this requirement is well matched to the operation of NDMA
receptors [20]. This alignment both makes Hebbian learning
appear viable and situates the function of NDMA receptors
within an encompassing system.

2. What is gained and lost traversing levels
One key question is what is the relationship between different
levels of analysis. Certainly, different levels of analysis provide
different viewpoints on the same phenomena. However,
different levels are not equivalent to one another. In particular,
additional explanatory concepts arise at higher levels of analy-
sis whereas lower levels of analysis contain more information.

The many-to-one mapping from higher level explanations
to lower level explanations highlights that there is more
information present at lower levels. For example, sorting as a
computational account can be realized by countless different
sorting algorithms at the algorithmic level. Knowing the
algorithmic account provides more information (specificity)
than is provided by the computational level account alone.
Likewise, there are many ways in which a mental state could
be realized by neural activity. For example, the same error
term in a reinforcement learning model is consistent with
manydifferent firingpatterns of striatal neurons. In the physical
domain, the same temperature, which is an aggregate measure
of kinetic energy, can arise from many configurations of par-
ticles. In economics, the same unemployment rate for a nation
is consistent with many combinations of people in and out of
work. The canonical example in computation is that a Turing
machine can be implemented in many physical substrates,
including the device from which you are reading this sentence,
tinker toys [21] and chemical reactions [22]. In all these
examples, the higher level account does not fix all the details
of the lower level account, though it will usually constrain the
space of solutions. For example, the space of algorithms that
do not perform sorting is much larger than those that do.

Supervenience is a useful concept for understanding the
relationship between levels of analysis [23]. Briefly, superveni-
ence holds that a change in a higher level entity must involve
a change in the lower level entity, but not vice versa. The classic
example is the relationship between themental and physical—
there cannot be a change in mental state without some
corresponding change in physical state. Likewise, the compu-
tational level goal in terms of desired input–output mapping
cannot change while the underlying algorithm remains
fixed. One quick note is that while supervenience is necessary
for reduction, it may not be sufficient (for a stronger notion of
ground, see [24]).

Although higher levels of analysis involve the loss of
information, they can offer explanatory concepts that do not
exist at lower levels of analysis. These higher level concepts
are central to our understanding. For example, how could
people make sense of the economy without higher level con-
cepts such as unemployment, inflation, money supply, etc.?
Likewise, how could neuroscience progress if we only
referred to atoms or even neurons without any higher level
conceptual organization?

In this light, the eliminative reductionist programme rarely
seems to reach its destination. It is hard to imagine neuro-
science without concepts like consolidation, receptive field,
replay, learning, error, recognition, etc. These are all concepts
that reside at a high level. It would seem as undesirable to
eliminate these high-level concepts as it would to discuss com-
puting applications in terms of nothing higher level than
transistors, eschewing higher level concepts such as algor-
ithms and programming languages. When our higher level
concepts are proven incorrect, we seem more inclined to
replace them with other higher level concepts rather than
simply eliminate them. We might retain higher level concepts
for reasons other than conceptual convenience as higher level
concepts can be realized in multiple lower level forms (e.g. the
Turing machine) such that fixing the lower level with no con-
nection to a higher level concept could lead to an incomplete
account of the domain.

One question is whether the information at one level can
constrain theories at another level. Given that the relationship
between levels is asymmetric in multiple ways (e.g. superve-
nience, loss of information at higher levels, additional
concepts at higher levels), there are actually two cases to con-
sider: (i) Does information at the higher level constrain the
lower level? (2) Does information at the lower level constrain
the higher level? The answers to these basic questions have
ramifications for how neuroscientists evaluate explanations
and can guide how formal models (often at the algorithmic
level) are related to brain measures [25–29].

Considering the first case, the higher level can constrain,
though not completely determine, the lower level given the
one-to-many possible mappings from the higher level to
the lower level. For example, knowing that an application
performs sorting provides a constraint on the possible algor-
ithms but does not specify the particular algorithm. The
higher level information does provide a useful constraint,
though. For example, by knowing sorting is being performed,
one could evaluate a number of possible sorting algorithms
and cleverly notice that their predicted runtimes differ in
informative ways as a function of problem size. By conduct-
ing the appropriate experiments varying problem size and
recording runtime (akin to response time in a psychology
study), one could infer which algorithm from the set is
most likely used. Here, knowing the application (at the
higher level) constrained the search space at the lower level.
Likewise, in model-based functional magnetic resonance ima-
ging (fMRI), including the error term from a cognitive model
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in the general linear model (GLM) analysis may identify can-
didate neural activity related to error processing [30]. Of
course, such a result would not prove those regions and
not others are involved in error correction. Beyond the stan-
dard correlative concerns, there are a number of ways that
information could be coded at lower levels that will not be
discoverable by fMRI [31]. Nevertheless, this top-down
approach provides valuable constraints in that it can rule
out possibilities and focus the researcher on identifying
which unknowns should be investigated.

Moving in the other direction, lower levels can constrain
the higher levels, though the key concepts of interest have
to already be present at the higher level to select among.
The lower level, by definition, does not contain these con-
cepts. For example, one can look at BOLD activity all day
but there is nothing in this measure alone that will lead one
to propose algorithmic concepts like prototype and exemplar
models of categorization. However, assuming these higher
level concepts are already established, one can ask whether
BOLD activity is more consistent with one algorithmic
account or another. I was involved in a model decoding
paper that did just this and found that changes in brain
state more closely tracked changes in the internal state of
an exemplar model than a prototype model [32]. Behaviour
alone did not favour one model over another for this task,
so this was a case where lower level information was critical
to selecting among competing higher level concepts.

For this kind of higher level model selection towork based
on information at lower levels, there needs to be some continu-
ity between levels [33]. The same can be said of joint modelling
procedures that simultaneously relate measures from different
levels to exploit shared variance and mutual constraints [25].
For example, the model selection procedure we formulated
explicitly assumed continuity across levels. Our claim was
that to the extent that an algorithmic level model is ‘real’, its
state should be reflected by brain state as measured by
BOLD response. If the gulf between these two levels of
analyses were greater, it’s unlikely we would have been
successful in bridging these levels.

A related criticism of computational accounts in cognitive
science that are not readily computable (e.g. some rational
Bayesian approaches) is that they cannot be easily put in
tight correspondence with an actual algorithm [34]. This
lack of correspondence is a barrier to multi-level explanation.
One proposed solution is to use sampling approaches (reflect-
ing cognitive constraints) to derive algorithmic versions of
computational level theories. For example, in recent years,
bounded rationality [35] has been repackaged as resource-
rational analysis in which an intractable Bayesian rational
account is approximated by an algorithmic level model
through sampling [36]. The approximate model can show
systematic deviations from the computational level theory
that allow it to account for human decision biases, such as
mimicking the anchoring-and-adjustment heuristic [37,38].

These discrepancies across levels bring into doubt whether
resource-rational analysis is a multi-level explanatory frame-
work. To make an analogy, is a sorting algorithm (figure 1)
that does not properly sort (i.e. follow a computational level
account of sorting) actually a sorting algorithm? More gener-
ally, it is not clear that an approximation can be said to be a
lower level version of the intended computational level
theory when the algorithm does not compute the function
specified at the computational level [33,34]. Worryingly, the
approximating algorithm does not strictly contain more infor-
mation than its supposed higher level counterpart as
information is lost in the approximation. Accordingly, super-
venience does not hold. This discrepancy between levels
can lead to theoretical inconsistencies in which other
computational level accounts better match the output of the
sampling algorithm than the computational level theory the
sampling algorithm aims to approximate.

This lack of correspondence across levels in resource-
rational analysis goes beyond a classic critique of algorithmic
level models, namely that many possible algorithms could
equally well compute the same computational level function
[39]. Although true, that classic critique is odd given that
lower level explanations should contain more information
than their higher level counterparts, much like how a
temperature could be realized by many configurations of par-
ticles. In the case of resource-rational models, the situation is
worse in that the algorithmic level model may better match
many alternative computational level accounts. The problem
cannot be solved by adding resource constraints to the com-
putational level to match the input–output behaviour of the
algorithmic model because those constraints would involve
assumptions about processing resources, which are not com-
putational level considerations. It can also prove challenging
to move in the opposite direction from an algorithmic level
model to the corresponding computational level account,
although it is possible in some cases [40].

One common-sense conclusion is that integration across
near levels should be more prevalent and successful. One
can see this sociologically as well. For example, in my experi-
ence, attendees at the Annual Meeting for the Society for
Neuroscience are curious about adjacent fields, but not fields
many steps away. This is probably sensible. To be more
extreme, a breakthrough in string theory is unlikely to
impact cognitive neuroscience.
3. The twin sirens of reduction and emergence
Discussion in neuroscience about what counts as a satisfying
explanation are invariably tied to levels of analysis, and in par-
ticular towhether higher level phenomena can be reduced to a
lower level account. Why study higher level concepts that in
reality merely reflect some lower level mechanism? The flip
side of this attitude is the suggestion that phenomena arise
that are emergent and are impossible in principle to explain
through lower level accounts. Consciousness (e.g. qualia,
[41]) is a classic example of a supposedly irreducible entity.
From the perspective of scientific practice, I will argue that
both stances are misguided. In the rare cases where a perfect
reduction is possible, the use or disuse of a level of analysis
is largely a pragmatic issue, much like choosing to program
in a higher level language (e.g. Python) versus assembly
language. Likewise, as will be unpacked, scientists should
avoid making strong metaphysical claims of emergence. Not
only will such claims be contentious, they are also likely
to be spurious because the conduct of science is chiefly
guided by practical, epistemic concerns. For instance, practical
limitations, such as the precision of measurement, characteriz-
ation of initial conditions (e.g. butterfly effect), available
computing resources, and the cleverness of researchers, will
likely be the limiting factors on what can be reduced absent
dubious ontological claims about emergence.
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As touched on in the previous discussion of levels of
mechanisms, neuroscience is a multi-level discipline whose
purview ranges from ion channels to social behaviours [42].
One longstanding view is that a theory is reduced to another
when the theory can be derived from the other using bridge
laws [43]. Every entity in the reduced theory is converted into
the other theory. Although this view itself is controversial,
the practical prospects of full reduction in neuroscience
seem fleeting. Most theories in neuroscience are not fully
developed nor sufficiently formal to allow equivalencies
to be established. Formal modelling work, such as response
time modelling, is well placed to draw out such equivalencies
within a level [44], but neuroscience as a whole seems insuf-
ficiently developed to seriously consider fully reducing
behaviour to ion channels. Furthermore, as a matter of prac-
ticality, it’s not clear what neuroscience would gain from this
reductionist pursuit as the field would almost certainly still
seek recourse in higher level concepts in practice, much like
how classical mechanics persists despite being a special
case or approximation of relativistic mechanics. Neuroscience
is so broad and diverse and its boundaries shift to include
topics such as neuroeconomics that it seems better suited to
a level of mechanism approach to draw out connections
and constraints across pursuits.

When scientists, even Nobel prize winners such as Robert
Laughlin [45], state that some entity is emergent, it’s often not
clear what they are asserting. Are these claims that a phenom-
enon is sufficiently complex that for practical purposes it
needs to be explained by appealing to higher level entities?
If so, this is a practical matter, much like how psychologists
study mental processes using higher level concepts while
not denying that these mental processes supervene on the
physical brain (i.e. there is nothing magical about thought).
Or, are those claiming emergence (as their language often
suggests) stating there is something special about what they
study that is not reducible to lower level entities in principle?

The latter position is highly problematic in that it brings
the physical basis of scientific explanation into question. It is
beyond the scope of this paper to unpack the philosophical
implications of strong or ontological emergence (see [46] for
a review), but briefly the emergence of causally efficacious
entities that cannot be reduced to their constituent parts can
lead to downward causation and causal overdetermination
[46]. For example, if mental states arise (i.e. supervene) on
physical states and physical states cause one another (i.e.
causal closure of the physical domain), then issues arise
when emergent mental states themselves become causally
potent. On many analyses, one ends up with what most scien-
tists would regard as ‘magic’ or epiphenomenal emergent
properties, which would seem to run counter to the motiv-
ation for invoking emergence in the first place. This is an
area of active debate within philosophy [47] that is very inter-
esting, though neuroscientists are probably best served by
not advancing strong forms of emergence as they will be on
uncertain footing.

There are many phenomena in science that are labelled as
emergent that in reality are reducible to their constituent
parts, but happen to be difficult to reduce in practice. For
example, swarm phenomena in which a bunch of locusts or
birds form an emergent entity are readily modelled on a com-
puter in which each entity (e.g. a locust) follows its own
simple, local rules [48]. In this case, as in Conway’s Game
of Life, the emergent properties are reducible to lower level
entities [49]. Related, chaotic phenomena are difficult
to understand, but are deterministic simulations that are
highly sensitive to initial conditions. Such phenomena may
at times be irreducible in current practice, but are not irredu-
cible in principle. In other words, these examples can be
reconciled without invoking magic or bringing physicalism
into doubt. What these and other examples do challenge is
the ability of scientists to understand complex phenomena
that involve many interacting elements, which is par for the
course in neuroscience. This weak, epistemic emergence
arises not from magic, but from our own ignorance, cognitive
limitations and imperfect tools [50–52].

4. Beyond levels and biological plausibility
Neuroscientists often invoke biological plausibility to support
certain accounts over others. A search of ‘biologically plausible’
onGoogle scholar returns 103 000 hits. Biological plausibility is
something the field strives toward and prizes. Unfortunately, it
is not clear that the claim of biological plausibility has content
or is coherent, particularly in the context of multi-level theoriz-
ing. Are higher level descriptions never biologically plausible
and if so, why? Alternatively, can one go too low toward phy-
sics and no longer be biologically plausible? These questions
are intended to highlight how poorly conceived and empty
neuroscience’s notion of biological plausibility is and the con-
fusion that results. For example, neural network models are
both praised and criticized in different quarters for being and
not being biologically plausible.

Asserting biological plausibilitywould seem to presuppose
the answer to the research question. If neuroscientists could
easily judge what is biologically plausible, then we would
not need to do further research. In practice, the claims are
often empty. For example, early connectionist models were
characterized as biologically plausiblewhereas production sys-
tems, like Adaptive Control of Thought-Rational (ACT-R) [53],
were characterized as implausible. As far as I can tell, these
early connectionist models, which in the vast majority of
cases did notmake contactwith actual brain data,were biologi-
cally plausible because they had a bunch of units with
connections that did stuff and the brain also had a bunch of
stuff that did stuff. Meanwhile, ACT-R has actually been
used in model-based fMRI analyses to help understand brain
activity that unfolds over seconds during complex tasks, such
as mental arithmetic [54].

To be charitable, when neuroscientists claim biological
plausibility it is possible they are quietly entertaining some
empirical finding that is consistent with their preferred
model rather than a vague unsubstantiated intuition. If so, to
make the claim substantive, the relevant data should be speci-
fied so that model selection procedures can determine the best
account. In model selection, the model that is most likely given
the data is preferred, which in practice means choosing the
model that balances data fitting and complexity (e.g. number
of parameters) or alternatively has the best cross-validated per-
formance. In figure 2, notice that the green and dashed-red
models both fit the same portion of the observed data, while
also predicting outcomes outside what is observed. The red
model is more flexible (i.e. complex) in what it can predict
and is therefore less likely given the data than the green
model, which should be preferred over the red model.

Notice that the green and the blue models are equally
complex and equally fit the data, albeit different aspects of



data

Figure 2. Models should be preferred to the extent that they predict and only
predict the true data patterns. A model selection procedure should prefer the
green model over the dashed-red model because both models capture the
same findings but the dashed-red model is consistent with more events
that do not occur. The red model is more flexible, related to the common
(and not always correct) criticism that a model with enough parameters can
fit anything. The interesting case is the green versus blue model. Both
models are equally complex (i.e. flexible) but account for different aspects
of the data. Claims of biological plausibility can amount to advocating for
the green or blue model from no firm basis. (Online version in colour.)
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the data. Which of these models is more biologically plaus-
ible? Imagine the green model is a deep learning model of
object recognition (trained through backpropagation) that
best fits recordings from the ventral visual stream. Imagine
the blue model is a model of object recognition, but one
that uses a ‘biologically plausible’ learning rule inspired by
apical dendrites of pyramidal neurons [55–57]. In summary,
the green model is not concerned with apical dendrites of
pyramidal neurons, whereas the blue model does not capture
activity along the ventral stream very well. Being generous,
the meaning of biologically plausible from common usage
appears to be ‘fitting the data one values’. The model selec-
tion addresses this impasse because it requires researchers
to specify the datasets of interest, sidestepping vacuous,
underspecified or misleading claims of biological plausibility.

In the previous example, the blue and greenmodels would
not be competitors if the empirical findings chosen to evaluate
each model were non-overlapping. In the case shown in
figure 2 in which all the data in the black box are deemed
relevant, the blue and green models do equally well overall
by capturing different aspects of the data. Further empirical
investigation and model testing would be necessary to prefer
one model over the other.

One might misconstrue biological plausibility as some
top-down, theoretical judgement and mistakenly cast model
selection as a bottom-up, data-driven approach. This dichot-
omy does not hold because model selection involves making
important theory-guided choices, such as choosing the
relevant datasets to explain, the relevant findings or con-
straints to follow (e.g. the spiking rate of artificial neurons
should not eclipse the maximum rate observed in actual
neurons) and the competing models to evaluate. Moreover,
any claim of biological plausibility that had substance
would itself need to be rooted in some finding, known con-
straint, or dataset, which if properly stated and evaluated
would closely conform to model selection.

The term biological plausibility should be dropped and
instead researchers should clearly state the relevant datasets
they intend to address with their theory or model. Adopting
this model selection orientation should also foster appreci-
ation that accounts exist at different levels. For example, it
would be very strange to attack a high-level cognitive
model for lacking ion channels, as would it be strange to
attack the Hodgkin–Huxley model for not accounting for
human categorization behaviour under dual-task conditions.
Once the explanandum (e.g. a relevant study) is clear and
competing models are evaluated, claims of biological plausi-
bility do no additional work. The model that fares best in
model selection is the most ‘biologically plausible’ for the
phenomena of interest.

One speculation is that levels in scientific enquiry, which
are not engineered as in the computer case (figure 1), arise
from communities interested in certain types of datasets. In
effect, the community is linked by repeated model selection
on overlapping datasets such that eventually a theoretical
language arises that is suited to describing the relevant
phenomena, an idea not far off from Kolmogorov complexity.
Adoption of a shared theoretical language would further
cement social bonds and define the community.

5. Measurements are not levels
One question is whether neural measurements that reflect the
activity of many cells, such as BOLD, are at a different level of
analysis from finer grain measures, such as single-unit
recordings. The brief answer is that measures themselves
are not levels of analysis, but that different measures can be
appropriate for evaluating mechanisms at different levels of
analysis. For example, the temperature is an aggregate
measure of the kinetic energy of particles in some region.
Thus, a thermometer will suffice for evaluating a theory
that only makes recourse to temperature, such as Boyle’s
Law. By contrast, a thermometer would not suffice for evalu-
ating the Maxwell–Boltzmann distribution for the speed of
particles for which finer grained measurements are needed.
In other cases, the scale of the measurement itself determines
its applicability. For example, measuring moderate speeds is
fine for evaluating Newtonian mechanics whereas measuring
incredible speeds is needed for Relativistic mechanics.

The relationship between BOLD and the firing rate of cells
within a region does not appear to be a matter of simple
aggregation as it is with particle speeds and temperature. If it
were, then BOLD could be used as a thermometer for neural
activity without further consideration. Although there is a
relationship between BOLD and neural activity [58–60] that
has enabled advances in cognitive neuroscience, the interpret-
ation of BOLD response is not always straightforward [61].
For example, BOLD response is affected by the local vascular
anatomy [62,63], differs according to age [64], and certain
regions are susceptible to imaging artefacts. The fact that
BOLD does not simply reflect aggregate neural activity
(either synaptic or spiking) complicates its usage.

On the positive side, BOLD’s divergence from simple aggre-
gation presents some opportunities. Perhaps rather than just
reflecting grey matter activity, BOLD may also reflect white
matter [65–67] and astrocyte [68–71] activity as well. If so,
BOLD response may track some general notion of energy con-
sumption that could be useful for evaluating theories. Because
BOLD is such an important measure for evaluating higher level
neuro-computational accounts, research that can explain what
BOLD is measuring should help clarify exactly what higher
level accounts applied toBOLDare tellingus about the brain [61].

Even though measures are not levels of analysis, the
same chauvinism seems to reign in which researchers’ pre-
ferred measure is proclaimed to be fundamental. Of course,
there is not a fundamental measure, just as there is not a
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fundamental level of analysis. Certainly, finer grain
measures, both in terms of spatial and temporal resolution,
would be desirable. However, even if we had the magic
machine that recorded every aspect of every cell at every
millisecond, we would still need higher level accounts to
make sense of this data deluge. In this scenario, higher
level accounts would likely aggregate over the fine-grain
measures, as we already do to an extent when preproces-
sing BOLD data.
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6. Discussion
A grasp of levels of analysis is key to scientific progress. For
better or worse, the day-to-day conduct of science is shaped
by scientists’ understanding of levels. Notions of mechanism,
emergence and reduction, even what one considers a satisfy-
ing explanation, are all tied to levels. How scientists construe
the relationship between their work and others’ is tied to
levels. A poor understanding of levels can lead to incoherent
claims of biological plausibility and unsubstantiated beliefs
that what one studies is somehow fundamental. These mis-
conceptions can slow scientific progress by obscuring where
the true fault lines and uncertainty lie.

There is not a single accepted hierarchy of levels, nor needs
there be a fixed number of levels. Indeed, in the levels of mech-
anism approach, a component of a mechanism can itself be
further decomposed. For example, the heart is part of the circu-
latory system but can be decomposed into its own parts that
support its function. Notice that the concept of a heart can
still be useful and treated as real even though it can be further
decomposed. In general, scientists would be better served by
considering how explanations relate to one another and evalu-
ating whether explanations are useful rather than engaging
in metaphysical debates about the ontological status of entities
at levels above particle physics. This is especially true in
neuroscience, where every entity is above this base level.

In this contribution, I have tried to make clear the
relationship between different levels of analysis. Different
levels are not equivalent. There are a number of asymmetries
between lower and higher levels. By definition, lower levels
contain more information whereas higher levels introduce
additional explanatory concepts that can be useful, even in
cases where they can be reduced. The particular concepts
and terms may change over time as theories change, but
neuroscience will always appeal to higher level concepts,
such as consolidation, receptive field, replay, learning, error
and recognition. Should all neuroscientists stop appealing
to higher level concepts, they will no longer be neuroscien-
tists but will instead be chemists, physicists, etc., and
neuroscience will cease to be an active discipline. Scientists
should resist the temptation to label every level above their
preferred level as superfluous and every level below as invol-
ving uninteresting details.
For issues involving reduction and emergence, scientists
are advised to focus on practical, epistemic concerns. Although
many neuroscientists have a reductionist bent [17], themajority
of theories in neuroscience are not sufficiently developed nor
formalized to allow for reduction. At the same time, neuro-
scientists are surprisingly tolerant of claims of emergence,
which can bring physicalism into question. Many phenomena
that are labelled as emergent can actually be simulated on a
computer through local interactions of the lower level entities,
such as in swarm behaviour. For phenomena that we can’t
explain through lower level interactions in practice, scientists
should be open to the possibility that epistemic factors, such
as limits in measurement, computation or their own ability,
are the limiting factors to understanding. It’s not clear
what the scientific rationale is for wading into the choppy
philosophical waters of strong emergence.

To build a level of mechanism understanding, scientists
need to determine how various explanations relate, such as
whether explanations are competing, unrelated, or at different
levels. Unfortunately, claims of biological plausibility do not
achieve these ends and are incoherent under a level of mechan-
ism view. A charitable interpretation is that claimants of
biological plausibility have some dataset in mind that their
model addresses that some other model does not. By instead
specifying the relevant data, model selection could be per-
formed to determine the best model without recourse to
vacuous claims of biological plausibility, which both presup-
poses the form of the solution and are largely in the eye of the
beholder. Model selection requires specifying the relevant data-
sets, which bears a resemblance to specifying the level of
analysis, though model selection can be both narrower (e.g.
just one dataset) and broader (e.g. datasets crossing levels), as
well as less ambiguous. Claims of biological plausibility offer
no value beyond what can be gained through model selection.

Measures, such as BOLD, are themselves not levels of
analysis but are often confused as such. For example, one
common assertion is that there is a behavioural level of
analysis. Although Marr’s computational level can be con-
cerned with behaviour, it is in the context of a task
specification (e.g. the input–output mapping, which could
be the stimulus-response mapping for a task). Behaviour,
BOLD response and single-unit recordings are all dependent
measures that can be used to evaluate theories. Like levels,
there is not some fundamental measure and understanding
how measures relate to one another can be fruitful. One
path to progress in neuroscience is exploiting the mutual
constraints across different levels of analysis and measures.
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