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Introduction 

Detecting similarities between objects is a cornerstone of 

many cognitive operations, such as categorization and 

memory retrieval. Although a great deal of effort has been 

put into understanding the nature of similarity in the 

behavioral realm, the foundations in neuroscience are less 

established. For example, powerful analysis techniques that 

involve comparing the similarities of brain states, such as 

representational similarity analysis (RSA), typically assume 

that brain states are similar to the extent that they are Pearson 

correlated (Kriegeskorte, Mur, & Bandettini, 2008). Each 

similarity measure brings with it a host of assumptions. For 

example, Pearson correlation assumes that overall levels of 

voxel activity are normalized and that each voxel 

independently contributes to similarity, whereas Minkowski 

measures assume similarity involves distances in a metrical 

space instead of vector directions, whereas the Mahalanobis 

measure expands on both measures by assuming that the 

distributional pattern of voxel activity is consequential. 

Which similarity measure best describes the brain’s 

operation? We address open questions such as whether the 

nature of neural similarity is common across tasks and brain 

regions.  

To that end, we follow the tradition of grounding similarity 

in confusability; when two things are similar they are easily 

confused. Complementarily, when two things are dissimilar 

they are easily discriminated. Confusability of different brain 

states can be measured with classification procedures such as 

linear support vector machines. For example, a sparrow may 

be more likely to be misclassified as a robin than a truck. We 

then consider which similarity measure best characterizes 

this confusability data for each brain region and task 

considered. Because some of the similarity measures we will 

consider are distance metrics, henceforth we will speak of 

dissimilarity, which we define as the inverse of similarity. 

Methods 

We analyzed data from an fMRI study considering the 

categorization of simple geometric shapes (GS, Mack, 

Preston & Love, 2013) and a second study that involved 

judgments of natural images (NI, Bracci & Op de Beeck, 

2016). 

Trial-by-trial estimates and ROI masking 

For both studies, we used a method known as LSS (Least 

Squares – Separate) trial-by-trial estimation to get a 

parameter estimate for each individual presentation of each 

stimulus (Mumford, Turner, Ashby & Poldrack, 2012).  

To parcellate the different anatomical regions for each 

participant we used 110 regions of interest as masks from the 

Harvard-Oxford cortical and subcortical structural atlases. 

The masks were transformed from MNI space to each 

participant’s native space. 

Classification analysis and ROI selection 

We trained a linear SVM classifier with leave-one-out k-

fold cross validation where k was equal to the number of 

functional runs for each participant and each ROI in each 

study. An optimization procedure looked for the top n voxels 

(ordered by highest to lowest F values from an ANOVA per 

voxel) where n maximized linear SVM accuracy for all 

pairwise classification problems between stimuli in each 

study with respect to a validation run. At the end of this 

procedure we rank ordered ROIs with respect to classifier 

accuracy and selected the union of the top ten regions across 

both studies for further analysis. 

Neural dissimilarity analysis 

The goal of this analysis was to compare competing 

dissimilarity measures for each ROI for each participant. 

Each dissimilarity measure was evaluated by Spearman 

correlating its pairwise dissimilarities with the corresponding 

classifier confusion rates. We computed all pairwise 

dissimilarities (i.e. for all pairs of stimuli) from the training 

runs defined in the classification analysis – not including the 

validation run. An analogous feature (i.e., voxel) selection 

method was used to maximize Spearman correlation for each 

dissimilarity measure as was used to tune the SVM classifier.  

Dissimilarity measures 

We evaluated the following dissimilarity measures: 

negative dot product, cosine distance, City-block 

(Manhattan) distance, Euclidean distance, three variants of 

Minkowski distance (with norms 5, 10 and 50), Chebyshev 

distance, 1-Spearman correlation, 1-Pearson correlation, 

three variants of Mahalanobis distance, three variants of 

Bhattacharya distance, variation of information, and distance 

correlation. The three variants of Mahalanobis distance and 

Bhattacharya distance were due to the way the sample 

covariance matrix was regularized; either no regularization, 



Ledoit-Wolf shrinkage (r) or diagonal regularization (d). 

Diagonal regularization was defined as the sample 

covariance matrix with all the off-diagonal elements set to 

zero. We only report measures that resulted in non-zero mean 

Spearman correlation with SVM accuracy. 

Results  

 

Figure 1: Dissimilarity measure profiles. The mean Spearman 

correlation for each similarity measure in the GS study (grey 

bars) and the NI study (black bars) is displayed. The error 

bars are standard errors of the mean. 

The main results are shown in Figure 1. We tested the effect 

of dissimilarity measures within each study with a mixed 

effects model. The models contained fixed effects of 

dissimilarity measure, linear SVM accuracy, participant, and 

ROI as well as random effects of ROI and participant. For the 

GS study, the effect of dissimilarity measures was significant, 

Χ(2) = 1720.331, p < .001. Similarly for the NI study, the 

effect of dissimilarity measures was significant, Χ(2) = 

6770.249, p < .001. 

The dissimilarity profiles shown in Figure 1 did not 

correlate between studies, r(12) = -0.28, p = 0.325, and were 

significantly different, t(12) = 4.28 , p < 0.001. 

Figure 2: ROI correlation matrices for the (a) GS and (b) NI 

studies, demonstrating that the performance of dissimilarity 

measures was Pearson correlated within task. The 12 ROIs 

(see Methods section) were left and right intracalcarine 

cortex (CALC), left and right lateral occipital cortex (LO) 

inferior and superior divisions, left and right lingual gyrus 

(LING), left and right occipital fusiform gyrus (OF), and left 

and right occipital pole (OP).  

The mean correlation of dissimilarity profiles across the 12 

ROIs was 0.95 (SD = 0.034) in the GS study (see panel a of 

Figure 2) and 0.96 (SD = 0.027) in the NI study (see panel b 

of Figure 2). Permutation tests (with 10,000 permutations), 

where the labels of the dissimilarity measures were permuted, 

showed that the average correlations were significantly 

different from zero in both studies, p < 0.001. 

Discussion 

We assessed what makes brain states functionally similar 

by evaluating a wide range of possible dissimilarity 

measures. Using data from two previous studies, we found 1) 

measures of dissimilarity differ in how well they gauge 

relationships between brain states, 2) different brain regions 

appear to use a common approach to coding state 

dissimilarity, and 3) the operable measures of dissimilarity 

vary across studies (i.e., task and stimulus set). These 

findings suggest that the representation of neural 

dissimilarity measures morph as a function of task demands 

or stimuli attributes. Although speculative, the fact that 

Minkowski measures performed best when stimuli were 

readily represented in a multidimensional space is suggestive.  

However, it is possible that differences in how measures of 

dissimilarity performed across studies were due to 

differences in data quality, cohort effects, or differences in 

fMRI equipment. 
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