445 research outputs found

    MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies

    Get PDF
    Traditional predictive models for transcriptome-wide association studies (TWAS) consider only single nucleotide polymorphisms (SNPs) local to genes of interest and perform parameter shrinkage with a regularization process. These approaches ignore the effect of distal-SNPs or other molecular effects underlying the SNP-gene association. Here, we outline multi-omics strategies for transcriptome imputation from germline genetics to allow more powerful testing of gene-trait associations by prioritizing distal-SNPs to the gene of interest. In one extension, we identify mediating biomarkers (CpG sites, microRNAs, and transcription factors) highly associated with gene expression and train predictive models for these mediators using their local SNPs. Imputed values for mediators are then incorporated into the final predictive model of gene expression, along with local SNPs. In the second extension, we assess distal-eQTLs (SNPs associated with genes not in a local window around it) for their mediation effect through mediating biomarkers local to these distal-eSNPs. Distal-eSNPs with large indirect mediation effects are then included in the transcriptomic prediction model with the local SNPs around the gene of interest. Using simulations and real data from ROS/MAP brain tissue and TCGA breast tumors, we show considerable gains of percent variance explained (1–2% additive increase) of gene expression and TWAS power to detect gene-trait associations. This integrative approach to transcriptome-wide imputation and association studies aids in identifying the complex interactions underlying genetic regulation within a tissue and important risk genes for various traits and disorders

    DeCompress: Tissue compartment deconvolution of targeted mRNA expression panels using compressed sensing

    Get PDF
    Targeted mRNA expression panels, measuring up to 800 genes, are used in academic and clinical settings due to low cost and high sensitivity for archived samples. Most samples assayed on targeted panels originate from bulk tissue comprised of many cell types, and cell-type heterogeneity confounds biological signals. Reference-free methods are used when cell-type-specific expression references are unavailable, but limited feature spaces render implementation challenging in targeted panels. Here, we present DeCompress, a semi-reference-free deconvolution method for targeted panels. DeCompress leverages a reference RNA-seq or microarray dataset from similar tissue to expand the feature space of targeted panels using compressed sensing. Ensemble reference-free deconvolution is performed on this artificially expanded dataset to estimate cell-type proportions and gene signatures. In simulated mixtures, four public cell line mixtures, and a targeted panel (1199 samples; 406 genes) from the Carolina Breast Cancer Study, DeCompress recapitulates cell-type proportions with less error than reference-free methods and finds biologically relevant compartments. We integrate compartment estimates into cis-eQTL mapping in breast cancer, identifying a tumor-specific cis-eQTL for CCR3 (C-C Motif Chemokine Receptor 3) at a risk locus. DeCompress improves upon reference-free methods without requiring expression profiles from pure cell populations, with applications in genomic analyses and clinical settings

    A New Tool for the Lamb Shift Calculation

    Full text link
    We solve the Bethe-Salpeter equation for hydrogenic bound states by choosing an appropriate interaction kernel KcK_c. We want to use our solution to calculate up to a higher order the hydrogen Lamb-shift, and as a first application we present up to order \left(\aa / \pi\right)(\za)^7 the contribution of the lowest order self-energy graph, calculated {\it exactly}. The basic formalism is a natural extension to the hydrogenic bound states of the one previously presented by R. Barbieri and E. Remiddi and used in the case of positronium.Comment: 21 pages, Latex, Preprint DFUB-94-0

    Assessing exposure effects on gene expression

    Get PDF
    In observational genomics data sets, there is often confounding of the effect of an exposure on gene expression. To adjust for confounding when estimating the exposure effect, a common approach involves including potential confounders as covariates with the exposure in a regression model of gene expression. However, when the exposure and confounders interact to influence gene expression, the fitted regression model does not necessarily estimate the overall effect of the exposure. Using inverse probability weighting (IPW) or the parametric g-formula in these instances is straightforward to apply and yields consistent effect estimates. IPW can readily be integrated into a genomics data analysis pipeline with upstream data processing and normalization, while the g-formula can be implemented by making simple alterations to the regression model. The regression, IPW, and g-formula approaches to exposure effect estimation are compared herein using simulations; advantages and disadvantages of each approach are explored. The methods are applied to a case study estimating the effect of current smoking on gene expression in adipose tissue

    Span morphing using the GNATSpar wing

    Get PDF
    Rigid wings usually fly at sub-optimal conditions generating unnecessary aerodynamic loses represented in flight time, fuel consumption, and unfavourable operational characteristics. High aspect ratio wings have good range and fuel efficiency, but lack manoeuvrability. On the other hand, low aspect ratio wings fly faster and are more manoeuvrable, but have poor aerodynamic performance. Span morphing technology allows integrating both features in a single wing design and allows continuously adjusting the wingspan to match the instantaneous flight conditions and mission objectives. This paper develops, a novel span morphing concept, the Gear driveN Autonomous Twin Spar (GNATSpar) for a mini-UAV. The GNATSpar can be used to achieve span extensions up to 100% but for demonstration purposes it is used here to achieve span extensions up to 20% to reduce induced drag and increase flight endurance. The GNATSpar is superior to conventional telescopic and articulated structures as it uses the space available in the opposite sides of the wing instead of relying on overlapping structures and bearings. In addition, it has a self-locking actuation mechanism due to the low lead angle of the driving worm gear. Following the preliminary aero-structural sizing of the concept, a physical prototype is developed and tested in the 7?×5? wind-tunnel at the University of Southampton. Finally, benefits and drawbacks of the design are highlighted and analysed

    A framework for transcriptome-wide association studies in breast cancer in diverse study populations

    Get PDF
    Background: The relationship between germline genetic variation and breast cancer survival is largely unknown, especially in understudied minority populations who often have poorer survival. Genome-wide association studies (GWAS) have interrogated breast cancer survival but often are underpowered due to subtype heterogeneity and clinical covariates and detect loci in non-coding regions that are difficult to interpret. Transcriptome-wide association studies (TWAS) show increased power in detecting functionally relevant loci by leveraging expression quantitative trait loci (eQTLs) from external reference panels in relevant tissues. However, ancestry- or race-specific reference panels may be needed to draw correct inference in ancestrally diverse cohorts. Such panels for breast cancer are lacking. Results: We provide a framework for TWAS for breast cancer in diverse populations, using data from the Carolina Breast Cancer Study (CBCS), a population-based cohort that oversampled black women. We perform eQTL analysis for 406 breast cancer-related genes to train race-stratified predictive models of tumor expression from germline genotypes. Using these models, we impute expression in independent data from CBCS and TCGA, accounting for sampling variability in assessing performance. These models are not applicable across race, and their predictive performance varies across tumor subtype. Within CBCS (N = 3,828), at a false discovery-adjusted significance of 0.10 and stratifying for race, we identify associations in black women near AURKA, CAPN13, PIK3CA, and SERPINB5 via TWAS that are underpowered in GWAS. Conclusions: We show that carefully implemented and thoroughly validated TWAS is an efficient approach for understanding the genetics underpinning breast cancer outcomes in diverse populations

    Intergenerational response to the endocrine disruptor vinclozolin is influenced by maternal genotype and crossing scheme

    Get PDF
    In utero exposure to vinclozolin (VIN), an antiandrogenic fungicide, is linked to multigenerational phenotypic and epigenetic effects. Mechanisms remain unclear. We assessed the role of antiandrogenic activity and DNA sequence context by comparing effects of VIN vs. M2 (metabolite with greater antiandrogenic activity) and wild-type C57BL/6 (B6) mice vs. mice carrying mutations at the previously reported VIN-responsive H19/Igf2 locus. First generation offspring from VIN-treated 8nrCG mutant dams exhibited increased body weight and decreased sperm ICR methylation. Second generation pups sired by affected males exhibited decreased neonatal body weight but only when dam was unexposed. Offspring from M2 treatments, B6 dams, 8nrCG sires or additional mutant lines were not similarly affected. Therefore, pup response to VIN over two generations detected here was an 8nrCG-specific maternal effect, independent of antiandrogenic activity. These findings demonstrate that maternal effects and crossing scheme play a major role in multigenerational response to in utero exposures

    Water waves generated by a moving bottom

    Full text link
    Tsunamis are often generated by a moving sea bottom. This paper deals with the case where the tsunami source is an earthquake. The linearized water-wave equations are solved analytically for various sea bottom motions. Numerical results based on the analytical solutions are shown for the free-surface profiles, the horizontal and vertical velocities as well as the bottom pressure.Comment: 41 pages, 13 figures. Accepted for publication in a book: "Tsunami and Nonlinear Waves", Kundu, Anjan (Editor), Springer 2007, Approx. 325 p., 170 illus., Hardcover, ISBN: 978-3-540-71255-8, available: May 200
    corecore