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Abstract

In observational genomics data sets, there is often confounding of the effect of

an exposure on gene expression. To adjust for confounding when estimating the

exposure effect, a common approach involves including potential confounders as

covariates with the exposure in a regression model of gene expression. However,

when the exposure and confounders interact to influence gene expression, the

fitted regression model does not necessarily estimate the overall effect of the

exposure. Using inverse probability weighting (IPW) or the parametric

g‐formula in these instances is straightforward to apply and yields consistent

effect estimates. IPW can readily be integrated into a genomics data analysis

pipeline with upstream data processing and normalization, while the g‐formula

can be implemented by making simple alterations to the regression model. The

regression, IPW, and g‐formula approaches to exposure effect estimation are

compared herein using simulations; advantages and disadvantages of each

approach are explored. The methods are applied to a case study estimating the

effect of current smoking on gene expression in adipose tissue.
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1 | INTRODUCTION

Increasing numbers of large‐scale observational genomic
data sets are available, in which tissue is collected from
human donors sampled from a population. These donors
differ in various ways, for example, they may differ by
age, sex, and other demographic variables, as well as by
clinical or exposure variables such as body‐mass index
(BMI), diet, level of physical activity, history of medicine
use, history of smoking or alcohol use, or various en-
vironmental exposures. Investigators are often interested

in assessing the effect of various exposures on genomic
variables, such as gene expression, as this may be useful
to generate hypotheses about potential cellular mechan-
isms through which exposures may influence the
development of diseases in human populations. Gene
expression is a common molecular measurement in
the context of exposure effects, although additional
genomic assays, such as methylation, metabolites, or
protein abundance, may also be of interest.

A number of statistical methods have been proposed
to address the problem of structural technical variation in
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gene expression measurements (Gagnon‐Bartsch &
Speed, 2012; Leek & Storey, 2007; Stegle, Parts, Piipari,
Winn, & Durbin, 2012), where structural refers to varia-
tion in the measurements across samples that is common
across many genes. These methods address sample non-
independence with a focus on estimation of latent factors,
orthogonal to the biological condition of the samples, to
be included in a linear model framework as regressors to
account for the technical variation in the measurements.
These methods can account for differences in measure-
ments among sample preparation batches that may
otherwise impair correct inference of differences across
the biological conditions. Additionally, methods have
been proposed to address sample correlations that arise
from biological sources, for example, repeated measures
or genetically related individuals. Such sample non-
independence can be addressed by explicit modeling of
the known sample correlation structure as in a random
effects framework (Cui, Ji, Li, Cheng, & Qiu, 2016);
software for this approach include the duplicateCorrela-
tion method (Smyth, Michaud, & Scott, 2005) in the
limma R/Bioconductor package (Smyth, 2004), the
ShrinkBayes R package (Van De Wiel et al., 2012), or
theMACAU R package (Sun et al., 2017), all of which can be
run from within the R environment (R Core Team, 2019).

Regression frameworks alone may not be able to
properly address the problem of confounding variables,
whether measured or unmeasured, in observational data
sets. Confounding is an issue when estimating causal
effects, and as such is a distinct problem from the tech-
nical and biological sources of correlations among sam-
ples described above. Confounding has received relatively
less attention in computational genomics, compared to
the problems of structural technical variance or repeated
measures. Existing work addressing confounding in ob-
servational genomic data sets has focused on sample
matching (Heller, Manduchi, & Small, 2008), the com-
bination of targeted minimum loss‐based estimation
(TMLE) and empirical Bayes shrinkage estimation
(Hejazi, Kherad‐Pajouh, van der Laan, & Hubbard, 2017),
and TMLE for differential methylation controlling for
observed methylation at neighboring genomic sites
(Hejazi, Phillips, Hubbard, & van der Laan, 2018).

Since the exposure in an observational study is not
randomly assigned, there is often confounding of the ef-
fect of exposure on the outcome. In general, randomized
clinical trials to assess how various exposures affect gene
expression cannot be conducted in human populations
for ethical or feasibility reasons. Similar randomized
studies can be performed on model organisms, but there
is unique value in understanding the mechanism of
these exposures in humans, and human populations are
readily available for observational studies. In light of the

increasing number of observational genomics studies on
humans and the anticipated presence of confounding in
such studies, methods of exposure effect estimation are
worth further investigation.

For many studies, it is often useful to assess exposure
effects on gene expression in the exposed individuals. This
may be the case when researchers have particular interest
in the effect of an exposure only on those types of in-
dividuals who likely will experience the exposure. For
example, when studying the effect of smoking, it is often
most relevant to obtain effect estimates interpretable for
those who actually smoke, as opposed to the effect
smoking would have, averaging over all the persons in
the general population. In these cases, the target esti-
mand is referenced as the exposure effect in the exposed;
this terminology will be used interchangeably with the
average treatment effect in the treated (ATT) throughout.
In contrast, the average treatment effect (ATE) is a dif-
ferent estimand and is interpretable in the context of the
population as a whole, including both treated and un-
treated individuals. This paper will focus on obtaining
estimates for the former, the ATT.

The conventional approach to quantifying the effect
of exposure, while attempting to adjust for confounding,
is to fit a linear model of gene expression with the ex-
posure and various potential confounders as covariates.
In this approach, the estimated coefficient of the ex-
posure variable is often interpreted as an estimate of the
exposure effect. However, fitting the conventional linear
model falls short of our goal in two respects: (a) it does
not directly produce an estimate of the effect of interest,
the effect of the exposure in the exposed individuals, who
may differ in various respects from unexposed in-
dividuals, and (b) it may not appropriately adjust for
confounding, resulting in estimates that are not con-
sistent and confidence intervals that do not provide their
nominal coverage. For these reasons, this paper demon-
strates existing causal inference methods that can be
employed in these scenarios to adequately adjust for
confounding and return consistent exposure effect esti-
mates and valid confidence intervals.

Regression, inverse probability weighting (IPW), and
the parametric g‐formula are compared herein for ob-
taining exposure effect estimates. Both IPW and the
parametric g‐formula are methods established and widely
applied to observational studies in the causal inference
and epidemiology literature. This paper seeks to de-
monstrate that these methods also have utility in the
space of observational genomics. In general, IPW uses
weights to construct a “pseudo‐population” in which
there is no longer confounding of the effect of an ex-
posure on the outcome of interest; simple linear regres-
sion is then applied to this “pseudo‐population” to obtain



consistent estimates of the exposure effect (Robins,
Hernán, & Brumback, 2000). The parametric g‐formula,
also referred to as standardization, entails fitting an
outcome regression model and then averaging the pre-
dicted outcomes across all individuals for a fixed level of
the exposure. Both IPW and the parametric g‐formula
rely on standard assumptions of causal inference (con-
ditional exchangeability, positivity, and consistency), but
they differ in the modeling assumptions required (Naimi,
Cole, & Kennedy, 2017). Statistical validity of the IPW
and parametric g‐formula methods rely on asymptotic
justifications, and are not guaranteed to perform well for
small sample sizes.

The following is an outline for the remaining sections
of this paper. A brief summary is given of the models
used, followed by more extensive description in Section 2
for both the simulation study and data analysis; formal
definitions are left to the Supporting Information Meth-
ods. In Section 3, the methods are compared in simula-
tions and a data analysis. Simulation studies are based
on the Metabolic Syndrome in Men Finnish cohort
(METSIM; Laakso et al., 2017) analysis data set (n= 770).
In particular, scenarios falling into three categories for a
binary exposure effect on gene expression are in-
vestigated: no confounding, and confounding both with
and without interaction(s) between exposure and cov-
ariates. The METSIM cohort data is then analyzed to
investigate the effect of current smoking on gene ex-
pression in adipose tissue. Section 4 concludes with re-
viewing and providing insight into the main results, and
addresses limitations of and future directions for this
study. The Supporting Information Methods gives details
on the models for the regression, IPW, and g‐formula
approaches, as well as estimates of standard errors and
assumptions required for each approach. In the Sup-
porting Information Results, it is first established why the
proposed methods are being compared to linear regres-
sion alone, and not to the linear model with empirical
Bayes moderation of the standard errors (e.g., as im-
plemented in the limma package; Smyth, 2004). This
section also contains additional regression analysis re-
sults for both the simulated data sets and the METSIM
cohort data. The Supplementary Results section con-
cludes with reporting of the root mean square deviation
for each estimation approach using the simulated data,
and sensitivity analyses for the METSIM cohort data.
Appendix A demonstrates the equivalence of the
g‐formula estimator presented in the main text and
the g‐computation algorithm of Snowden, Rose, and
Mortimer (2010). Appendix B provides R markdown
(Rmd) workflows showing the generation of the simu-
lated data and performing the three methods on a
simulated data set.

2 | METHODS

2.1 | Summary of models compared

Three exposure effect estimation approaches were as-
sessed in the following evaluation: traditional linear re-
gression, IPW, and the parametric g‐formula. In fitting
the models associated with each approach, it was as-
sumed that the models were correctly specified, the set of
confounders identified was sufficient to adjust for con-
founding, and the data were free from selection bias and
systematic measurement error. The regression model
with the exposure and potential confounders as pre-
dictors was fit using ordinary least squares for both the
parameter estimates and their standard errors, in keeping
with the conventional approach. For the IPW approach,
the confounders were used as predictors in a logistic re-
gression model of the exposure to obtain the weights, and
the weights were used in the simple linear regression
model of gene expression on the exposure using weighted
least squares. In the g‐formula approach, all potential
confounders were centered at the mean value in the ex-
posed, and the linear regression model with the exposure,
centered confounders, and their interactions was fit using
ordinary least squares. The standard errors for both the
IPW and g‐formula estimators were computed using
stacked estimating equations (Stefanski & Boos, 2002).
The details of using these methods with observational
genomics data are described further in Section 2, formally
defined in the Supporting Information Methods section,
and demonstrated in the R code included in Appendix B.

2.2 | Simulation study

Performance of methods was first compared using a si-
mulation. The simulated covariates and exposure were
based on counterparts from the METSIM data analysis in
the next section. Specifically, the simulated variables in-
cluded a current smoking indicator and five variables
considered to be potential confounders of the relationship
between current smoking and gene expression. Table 1
below gives more details regarding variable distributions
and dependencies.

Following the generation of the variables in Table 1,
normalized gene expression values for various scenarios
were simulated as well. For scenarios where no con-
founding was present, the mean of the expression values
were dependent on only the exposure or none of the
variables. When confounding was present, the mean ex-
pression values were dependent on both the exposure
and the other covariates, with some scenarios including
interactions between the exposure and the covariates.



Expression values were generated with different means
for each individual and each gene, according to the
simulated exposure and covariates. The mean for gene
g and individual i was

(
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where the βgk, k= 1,…, 10, varied by gene and were re-
stricted to βgk∈ [−2,2] for this simulation study. Here
age, alc, and bmi were each centered about their popu-
lation mean and scaled. Note that there was no quadratic
age term and no interaction term for age and smoking in
the true model for mean expression, although the former
was included in the analysis models; these terms can be
thought of as not contributing to the true mean gene
expression for any individual. The standard deviation of
each gene was set to the same value to aid with com-
paring results for different genes, and was equal to 0.24.

The variables listed in Table 1 were generated for a
population of 10 million individuals, from which the true
ATT was calculated for each gene. From this population,
1,000 sets of 770 individuals were randomly selected with
replacement to build the analysis data sets. The sampling
algorithm allowed for the same individual to be present
in more than one data set, but not more than once within
a single data set.

In all instances the regression model had the same
form shown in Equation S.1 of the Supporting Informa-
tion Materials, namely the exposure and covariates (with
both linear and quadratic age terms) were each present as
main effects in the model and no interaction terms were
included; for simulation study results of the regression
analyses including interactions in the model, see Sup-
porting Information Results. The covariates age, age2, alc
and bmi were centered at their sample mean and scaled
for each data set, as would typically be done to avoid

collinearity with the intercept. The standard errors used
to construct the 95% confidence intervals were obtained
through fitting the model with ordinary least squares.

For the IPW approach, first the logistic regression
model in Equation S.2 of the Supporting Information
materials was used to compute the components needed
for the weights for each data set, with terms for the five
covariates and a quadratic age term. Weights for the ATT
were then constructed according to expression S.3 of the
Supporting Information materials. Then the linear re-
gression model of gene expression in S.4, with only the
exposure and an intercept, was fit with the weights to
obtain the effect estimate. Standard error estimates used
to obtain the 95% confidence intervals were computed
with the stacked estimating equations approach using the
geex package (Saul & Hudgens, 2020) in R, taking into
account estimation of the weights by stacking the esti-
mating equations for the logistic regression model with
those used in computing the IPW estimator.

The regression model given in Equation S.5 of the
Supporting Information materials was used to obtain the
g‐formula estimate for each data set. It contained vari-
ables for the main effects of the exposure and covariates
(including both linear and quadratic age) as well as in-
teractions between smk and each of bmi, veg, hex, and alc.
Since the ATT is being compared across methods in this
simulation study, the non‐exposure covariates were all
centered at the sample mean in the exposed. The stan-
dard error estimates used for the 95% confidence inter-
vals were computed with stacked estimating equations by
passing geex the set of stacked estimating equations cor-
responding to the covariate means and the regression
model parameters.

2.3 | METSIM smoking exposure effect

In the METSIM project data set, the goal was to obtain
the estimated effect of current smoking on gene expres-
sion in the smokers, adjusting for the set of potential

TABLE 1 Definitions of exposure and
confounding variables for simulation study
comparing regression, IPW, and the
parametric g‐formula

Variable Distribution Dependencies

Age (age) Normal None

Alcohol consumption (alc) Exponential None

Vegetable consumption (veg) Binary None

Hobby exercise (hex) Categorical (4 levels) veg

BMI (bmi) Normal veg, hex

Current smoking (smk) Binary alc, bmi, veg, hex

Abbreviations: BMI, body‐mass index; IPW, inverse probability weighting.



confounders: linear and quadratic age, BMI, alcohol
consumption, vegetable consumption, and hobby ex-
ercise. The data consisted of adipose gene expression
values and several covariates, measured for n= 770 in-
dividuals (details on data preprocessing in Supporting
Information Methods). There were no missing outcome,
exposure, or covariate values. This cohort was analyzed
in Civelek et al. (2017), where BMI and linear and
quadratic age were considered confounding variables for
various phenotypic traits. This analysis, and consulta-
tions with a subject‐matter expert, guided the choice of
the confounding variable set. Note that current smoking
was not examined by Civelek et al., so their analyses were
not compared directly to those in this paper. Each of the
three methods introduced above were implemented for
this cohort in the analyses that follow.

Table 2 briefly summarizes the variables used in this
analysis; the range, mean and standard deviation are re-
ported for continuous variables and the levels and dis-
tribution are given for each categorical variable. For hobby
exercise, higher levels denote increased activity levels.

Note that the models used for the data analysis had
the same form as those fit for the simulation study,
described in the section above. The estimated exposure
effect was obtained using regression, IPW, and the
g‐formula for each of the 18,510 genes; the coefficient
for current smoking represented the exposure effect in
each model. The models were fit and standard errors
computed, again using the same process as for the
simulation study; for results of the regression analyses
including interactions in the model with the METSIM
data, see Supporting Information Results. With each
approach, a t‐test of no effect of exposure on gene

expression was performed for each gene and the
resulting p‐values were adjusted using the correction
from Benjamini and Hochberg (1995) to control the
false discovery rate.

To compute weights for the 770 individuals, the lo-
gistic regression model of current smoking was fit with
the previously listed covariates as predictors. Before
computing effect estimates and standard errors, it is good
practice to check that the weights have a mean value
close to the expected value (details in Supporting
Information Methods) and that none of the weights are
extreme. The weights had mean value 0.34, which was
exactly what was expected for these data. There was one
weight with a value of 5.26, substantially larger than the
rest; for this reason, a sensitivity analysis was conducted
in the Supporting Information Results section where
the observation with this large weight was deleted and
the same analysis was performed again to investigate the
influence of this observation.

For both the g‐formula and regression methods,
leverage values were computed for each observation to
determine if there were any influential points in these
analyses; the same observation returned the largest
leverage point for both the g‐formula and regression,
which took values 0.38 and 0.11, respectively. In both
instances these leverage values were approximately twice
the magnitude of the next largest value, so another sen-
sitivity analysis was conducted in the Supporting In-
formation Results where the observation with this large
leverage value was deleted and the analysis was per-
formed again to investigate its influence.

3 | RESULTS

3.1 | Simulation study

The empirical bias and confidence interval coverage and
width for the regression, IPW, and g‐formula estimators
are shown in Table 3, averaging over 1,000 simulations
per scenario. While there were instances where all esti-
mators appeared to perform well, the IPW and g‐formula
estimators provided advantages over regression in a
subset of the simulated scenarios. In particular, the IPW
and g‐formula estimators remain unbiased and meet
nominal confidence interval coverage in all scenarios, but
the regression estimator manifests bias and fails to meet
nominal coverage in the presence of exposure‐covariate
interactions. The reported coverage represents the pro-
portion of confidence intervals which included the true
value of the ATT. The true ATT value is shown for each
scenario, and is based on the original population of
10 million individuals. The null case where there was no

TABLE 2 Descriptive statistics for the METSIM cohort data

Variable Range Mean (SD)

Age (years) 45, 68 55 (5)

Alcohol consumption
(g/week)

0, 1134 105 (119)

BMI (kg/m2) 18.5, 48.1 26.6 (3.5)

Level Proportion

Vegetable consumption Everyday 0.83

Not everyday 0.17

Hobby exercise 1 0.05

2 0.28

3 0.18

4 0.49

Current smoking Yes 0.17

No 0.83



effect of current smoking on gene expression is shown in
addition to several representative scenarios where con-
founding was present, two without and three with one or
more interactions between exposure and confounders.

True ATT values in these simulations are in units of
log2 fold change in gene expression. As normalized gene
expression data are often on the log2 scale, linear effects
are commonly interpreted as log2 fold changes with re-
spect to the raw gene expression scale (Smyth, 2004). The
most extreme scenario shown here, where the true ATT
is 2.00, thus represents a fourfold change in gene ex-
pression attributable to smoking. Additional simulation
studies were conducted that are not shown in this table,
but the results were similar to those included. Across all
simulations run, the average bias of the regression esti-
mator took values in the range [−0.29, 0.29], whereas the
IPW and g‐formula average biases were contained to
[−0.01, 0.01]. For this simulation study setup, the re-
gression bias appears to be larger in magnitude when
interaction terms involving alcohol and hobby exercise
contributed to the true ATT.

When smoking and the confounders did not interact
to influence gene expression, for example, the first three
examples in Table 3, all methods met nominal coverage
and yielded no bias on average. In scenarios where in-
teractions existed between smoking and the confounders,
the regression effect estimator had nonzero average bias
and substantially below nominal confidence interval
coverage. The IPW and g‐formula estimators both re-
sulted in very low or no bias on average, and both uni-
formly met (or very nearly met) the nominal confidence
interval coverage. Except in the null case, the IPW and
g‐formula estimators were generally more variable than
the regression estimator. When smoking and the con-
founders interacted, the IPW and g‐formula estimates
had confidence intervals that were on average approxi-
mately twice as wide as those for regression. Of the two
methods that overall maintained the nominal coverage

across scenarios, IPW and g‐formula, they tended to have
comparable interval width except in one of the no‐
interaction scenarios, in which IPW had nearly double
the average interval width of g‐formula.

3.2 | METSIM smoking exposure effect

Regression, IPW, and g‐formula were applied to assess
the effect of smoking on gene expression among smokers
in the METSIM cohort. Estimates and confidence inter-
vals for each of the three methods, for the top two genes
as ranked by p‐value are presented in Figure 1a,b (the top
two genes are shown as their effect sizes and test statistics
were appreciably larger compared to the other genes).
The three methods were in agreement on the ranking for
the top three genes, but beyond this the rankings were
not consistent across method (Figure 1c). The top two
genes in terms of estimated effect size and test statistic
were CYP1A1 and CYP1B1, which were expected as they
play a role in metabolizing cigarette smoke (Nebert &
Russell, 2002). The confidence intervals for the IPW and
g‐formula estimates of the top two genes were similar in
width, and the regression confidence interval was sub-
stantially less wide. While the −log10 adjusted p‐values
for the top two genes were all large for each of the three
methods (highly significant), those from regression were
much larger than those from IPW and the g‐formula
(CYP1A1: R = 119, W= 44, G = 44; CYP1B1: R = 30,
W= 18, G = 20). This is in accordance with the displayed
difference in confidence interval widths for the smoking
effect estimates of these two genes. Although the ATT
estimates were similar across methods for the genes
shown, instances of substantial differences in standard
error produced vastly different confidence intervals and
p‐values.

IPW and the g‐formula tended to produce larger
p‐values than regression for these data, though this was

TABLE 3 Average empirical bias and 95% CI coverage and width for the regression (Reg), IPW, and g‐formula (G‐form) estimators

Estimate bias 95% CI coverage 95% CI width

Scenario True ATT Reg IPW G‐form Reg IPW G‐form Reg IPW G‐form

Null case 0.00 0.00 0.00 0.00 0.96 0.96 0.95 0.10 0.10 0.10

No interactions 1 −2.00 −0.00 0.00 0.00 0.95 0.96 0.95 0.10 0.11 0.10

No interactions 2 2.00 0.02 0.01 −0.00 0.91 0.92 0.94 0.15 0.35 0.18

Interactions 1 1.59 0.12 0.00 0.00 0.34 0.96 0.96 0.18 0.39 0.39

Interactions 2 −0.36 −0.20 0.00 0.00 0.19 0.96 0.95 0.23 0.51 0.51

Interactions 3 −1.75 −0.20 0.01 0.01 0.37 0.95 0.95 0.31 0.70 0.70

Abbreviations: ATT, average treatment effect in the treated; CI, confidence interval; IPW, inverse probability weighting.



not the case for every gene (Figure 1c). Note that in this
figure the top two genes were not represented, as their
−log10 adjusted p‐values were much larger than the
others. Additionally, the smoking effect estimates for all
genes except the top two were in the range (−0.5, 0.5),
with many very close to zero.

4 | DISCUSSION

Geneticists and epidemiologists may analyze differential
gene expression due to exposures in a population to
generate hypotheses as to how those exposures may be
related to health outcomes. Results of these analyses, that
is lists of genes affected by the exposure under a false-
discovery rate bound and their associated effect sizes,
may be inaccurate and irreproducible across study po-
pulations unless potential confounders of the exposure
and gene expression are properly adjusted for. Here, ex-
posure effect estimates were compared using causal in-
ference techniques such as IPW and the parametric
g‐formula, as well as with common practice techniques
such as regression. Comparisons were performed across
simulated data and a data analysis in which gene ex-
pression was measured in subcutaneous adipose tissue.
Tissue donors also had various clinical and demographic
covariates measured, and it was desired to adjust for
differences among the exposed and unexposed donors
when estimating the ATT. Analyses of the METSIM co-
hort found that estimation method did not make a sub-
stantial difference for the effect estimates for the top two
genes, CYP1A1 and CYP1B1. Simulations based on the
METSIM data showed that there was potential for the
regression estimate to be biased, but the effect biases
observed in the data analyses were small. Differences
between the methods were most pronounced when ex-
amining the standard errors and therefore also the re-
sulting confidence intervals and p‐values. In particular,
simulations based on the METSIM data showed that if
there were any interactions of the exposure with the
confounder(s), the regression method produced con-
fidence intervals that can have far below nominal cov-
erage. Furthermore, what may appear to be modest
changes in standard errors can produce a dramatically
different set of adjusted p‐values for a given set of genes.

In addition to the standard errors, regression as ap-
plied here differs from IPW and the parametric g‐formula
in that the regression estimates do not represent the ef-
fect of exposure in the exposed, but rather in the popu-
lation as a whole. While IPW and the g‐formula can be
adapted to produce the exposure effect in the population
or subpopulation of interest, regression estimates remain
population‐wide estimates—unless operating under the
assumption that ATE and ATT are equal.

It should be mentioned that if all appropriate inter-
action terms were included in the regression model, the
parameter estimates could be combined to yield con-
sistent conditional exposure effect estimates. However,
this approach was not taken here for two reasons: (a) the
goal was to obtain one exposure effect estimate that could
be read directly from software output without additional

FIGURE 1 METSIM analysis results for the top 50 genes,
ranked by p‐value. (a,b) Estimates and 95% confidence intervals
for the effect of current smoking in the smokers for genes
CYP1A1 and CYP1B1, respectively. Note that the null value for
the smoking effect estimate (log2 fold change = 0) is not
included on the x‐axis. (c) −log10 adjusted p‐values for the top
50 genes (omitting top 2), for each of R = regression,
W= inverse probability weighting, and G= parametric
g‐formula



steps, and (b) the exposure effect estimate constructed via
combination of exposure and interaction terms would be
interpreted conditional on values of the covariates,
whereas the desired exposure effect estimate has a mar-
ginal interpretation. Expanding on this second reason,
regression with all appropriate interaction terms would
result in a variety of exposure effects across combinations
of covariates used for conditioning, as opposed to the
causal approaches presented here which provide one
exposure effect integrating over the exposed individuals.
If all appropriate interaction terms were included in the
regression model and centered at the mean in the po-
pulation of interest, then the regression model would be
equivalent to the parametric g‐formula model.

Often in analyses of exposure effects on microarray
gene expression, the limma method is used to fit the re-
gression models and obtain a moderated t‐statistic
(Smyth, 2004), whereas here the ordinary t‐statistic was
used. The simulation results illustrating the rationale
behind this choice are included in the Supporting In-
formation Results section. In short, the sample size of the
cohort analyzed here (n= 770) was sufficiently large that
the ordinary and moderated t‐statistics are practically
equivalent. More recently, another method has been
proposed involving the combination of TMLE and em-
pirical Bayes shrinkage estimation, which has demon-
strated utility with small and moderate sample sizes
(Hejazi et al., 2017). The intended audience of this paper
is working with larger data sets, allowing for reliance on
large sample theory; for this reason the simpler and more
readily available approach was used for the regression
analysis. Here, prenormalized microarray gene expres-
sion, which takes continuous values, was analyzed, while
RNA sequencing experiments result in count‐valued ob-
servations for gene expression. In order for the causal
inference approaches shown here to be applied to count
data from RNA sequencing, it would be desirable to first
perform library size scaling and apply a variance stabi-
lizing transformation to the gene expression (Anders &
Huber, 2010; Law, Chen, Shi, & Smyth, 2014), though
such data sets and procedures were not evaluated in the
present work.

The IPW and parametric g‐formula approaches are
both presented here as alternates to regression that ade-
quately adjust for confounding in a wider variety of
circumstances. While IPW and the g‐formula both ac-
complish this goal, they require slightly different as-
sumptions and they have different strengths and
weaknesses. The IPW estimator relies on correct specifi-
cation of the exposure model, which is often more
plausible than correct specification of the outcome
model. IPW can be sensitive to extreme weights, as
shown in the sensitivity analysis results for the METSIM

data, and can be more variable than the g‐formula esti-
mator. While the consistency of the g‐formula estimator
relies heavily on the correct specification of the outcome
model, it appears to be less sensitive to extreme values of
the covariates and can be less variable than the IPW es-
timator. Due to the limited overall differences in the bias
and efficiency of the IPW and g‐formula estimators, the
researcher is encouraged to choose among methods based
on their relative confidence in specification of the ex-
posure or outcome models.

There are several assumptions made in these analyses
which may be violated and deserve further exploration.
First, the assumption of causal consistency states that
there are not multiple ways to be a current smoker. This
assumption is clearly not met since the amount of ci-
garettes smoked daily can vary from person to person,
but this assumption can be replaced by another less
stringent assumption. In particular, it can more reason-
ably be assumed that these different versions of exposure
do not have any bearing on the causal effect; this is re-
ferred to as treatment variation irrelevance (Vander
Weele, 2009). The data analyses above rely on the addi-
tional assumptions that the set of confounders L are
sufficient to adjust for confounding. In addition to con-
founding, there may be other possible sources of bias
when estimating exposure effects. For example, the
methods here implicitly assume no systematic measure-
ment error; for methods that account for measurement
error see Hernán and Cole (2009), Hernán and Robins
(2020), Kuroki and Pearl (2014), and Suzuki, Tsuda,
Mitsuhashi, Mansournia, and Yamamoto (2016). In ad-
dition, the methods described here assume the data
constitute a random sample from the target population.
Nonrandom sampling from the population of interest
may also introduce bias; for methods to accommodate
biased sampling, see Buchanan et al. (2018), Lesko et al.
(2017), Stuart, Cole, Bradshaw, and Leaf (2011). If any of
these assumptions are unmet then the exposure effect
estimates may be biased. Furthermore, formal arguments
for the methods presented rely on large sample theory;
while there is some empirical evidence suggesting that,
for example, IPW can perform well with moderate sam-
ple sizes (Pirracchio, Resche‐Rigon, & Chevret, 2012),
these methods are not guaranteed to perform well for
small or moderate samples.

The performance of doubly robust estimators for es-
timating exposure effects on gene expression could be
investigated in future work. Doubly robust estimators
have been shown to provide advantages over IPW or
the g‐formula (Lunceford & Davidian, 2004; Moodie,
Saarela, & Stephens, 2018; Naimi & Kennedy, 2017), and
could conceivably allow a relaxation of certain modeling
assumptions in observational genomics analyses while



maintaining the desirable properties of causal methods.
Additionally, this paper focuses on binary exposures but
future work could expand this to allow for continuous or
longitudinal exposures.
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