2,369 research outputs found

    The use of liquid crystal adaptive optics devices in astronomy

    Get PDF
    Images obtained from large astronomical telescopes are distorted and blurred by the effects of the atmosphere. In order to compensate for this, an adaptive optics system can be incorporated downstream from the telescope focus. Conventional technology uses small piezo-driven mirrors to deviate the wavefronts through angles of the order of tens of arcseconds. This thesis is concerned with the possible replacement of these mirrors with liquid crystal phase control devices, in particular, small-angle prisms. The thesis considers the following fundamental optical properties of liquid crystals relevant to astronomy; dispersion, optical quality, dynamic range, and response times. Results of a novel approach to electrically addressing liquid crystals by a ramp voltage are given

    Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica.

    Get PDF
    Middle-to-late Ediacaran (575-541 Ma) marine sedimentary rocks record the first appearance of macroscopic, multicellular body fossils, yet little is known about the environments and food sources that sustained this enigmatic fauna. Here, we perform a lipid biomarker and stable isotope (δ15Ntotal and δ13CTOC) investigation of exceptionally immature late Ediacaran strata (<560 Ma) from multiple locations across Baltica. Our results show that the biomarker assemblages encompass an exceptionally wide range of hopane/sterane ratios (1.6-119), which is a broad measure of bacterial/eukaryotic source organism inputs. These include some unusually high hopane/sterane ratios (22-119), particularly during the peak in diversity and abundance of the Ediacara biota. A high contribution of bacteria to the overall low productivity may have bolstered a microbial loop, locally sustaining dissolved organic matter as an important organic nutrient. These oligotrophic, shallow-marine conditions extended over hundreds of kilometers across Baltica and persisted for more than 10 million years

    Creating correct aberrations: why blur isn’t always bad in the eye

    Get PDF
    In optics in general, a sharp aberration-free image is normally the desired goal, and the whole field of adaptive optics has developed with the aim of producing blur-free images. Likewise, in ophthalmic optics we normally aim for a sharp image on the retina. But even with an emmetropic, or well-corrected eye, chromatic and high order aberrations affect the image. We describe two different areas where it is important to take these effects into account and why creating blur correctly via rendering can be advantageous. Firstly we show how rendering chromatic aberration correctly can drive accommodation in the eye and secondly report on matching defocus-l generated using rendering with conventional optical defocus

    ChromaBlur: Rendering Chromatic Eye Aberration Improves Accommodation and Realism

    Get PDF
    Computer-graphics engineers and vision scientists want to generate images that reproduce realistic depth-dependent blur. Current rendering algorithms take into account scene geometry, aperture size, and focal distance, and they produce photorealistic imagery as with a high-quality camera. But to create immersive experiences, rendering algorithms should aim instead for perceptual realism. In so doing, they should take into account the significant optical aberrations of the human eye. We developed a method that, by incorporating some of those aberrations, yields displayed images that produce retinal images much closer to the ones that occur in natural viewing. In particular, we create displayed images taking the eye's chromatic aberration into account. This produces different chromatic effects in the retinal image for objects farther or nearer than current focus. We call the method ChromaBlur. We conducted two experiments that illustrate the benefits of ChromaBlur. One showed that accommodation (eye focusing) is driven quite effectively when ChromaBlur is used and that accommodation is not driven at all when conventional methods are used. The second showed that perceived depth and realism are greater with imagery created by ChromaBlur than in imagery created conventionally. ChromaBlur can be coupled with focus-adjustable lenses and gaze tracking to reproduce the natural relationship between accommodation and blur in HMDs and other immersive devices. It may thereby minimize the adverse effects of vergence-accommodation conflicts

    Lipid biomarker and stable isotopic profiles through Early-Middle Ordovician carbonates from Spitsbergen, Norway

    Get PDF
    One of the most dramatic episodes of sustained diversification of marine ecosystems in Earth history took place during the Early to Middle Ordovician Period. Changes in climate, oceanographic conditions, and trophic structure are hypothesised to have been major drivers of these biotic events, but relatively little is known about the composition and stability of marine microbial communities controlling biogeochemical cycles at the base of the food chain. This study examines well-preserved, carbonate-rich strata spanning the Tremadocian through Upper Dapingian stages from the Oslobreen Group in Spitsbergen, Norway. Abundant bacterial lipid markers (elevated hopane/sterane ratios, average = 4.8; maximum of 13.1), detection of Chlorobi markers in organic-rich strata, and bulk nitrogen isotopes (delta N-15(total)) averaging 0 to -1 parts per thousand for the open marine facies, suggest episodes of water column redox-stratification and that primary production was likely limited by fixed nitrogen availability in the photic zone. Near absence of the C-30 sterane marine algal biomarker, 24-n-propylcholestane (24-npc), in most samples supports and extends the previously observed hiatus of 24-npc in Early Paleozoic (Late Cambrian to Early Silurian) marine environments. Very high abundances of 3 beta-methylhopanes (average = 9.9%; maximum of 16.8%), extends this biomarker characteristic to Early Ordovician strata for the first time and may reflect enhanced and sustained marine methane cycling during this interval of fluctuating climatic and low sulfate marine conditions. Olenid trilobite fossils are prominent in strata deposited during an interval of marine transgression with biomarker evidence for episodic euxinia/anoxia extending into the photic zone of the water column. (C) 2019 Elsevier Ltd. All rights reserved.Peer reviewe

    A Stratified Redox Model for the Ediacaran Ocean

    Get PDF
    The Ediacaran Period (635 to 542 million years ago) was a time of fundamental environmental and evolutionary change, culminating in the first appearance of macroscopic animals. Here, we present a detailed spatial and temporal record of Ediacaran ocean chemistry for the Doushantuo Formation in the Nanhua Basin, South China. We find evidence for a metastable zone of euxinic (anoxic and sulfidic) waters impinging on the continental shelf and sandwiched within ferruginous [Fe(II)-enriched] deep waters. A stratified ocean with coeval oxic, sulfidic, and ferruginous zones, favored by overall low oceanic sulfate concentrations, was maintained dynamically throughout the Ediacaran Period. Our model reconciles seemingly conflicting geochemical redox conditions proposed previously for Ediacaran deep oceans and helps to explain the patchy temporal record of early metazoan fossils

    Multiple cosmic sources for meteorite macromolecules?

    Get PDF
    The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in 13C and a refractory fraction made up of large aromatic units depleted in 13C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter
    • …
    corecore